Ways to reduce overheating in a assive standard school building


openaccess, Vol. 616 (12) 2023 / piątek, 22 grudnia, 2023

(Open Access)

DOI: 10.15199/33.2023.12.14

Dudzińska Anna, Panasiuk Ewelina. 2023. Ways to reduce overheating in a assive standard school building. Volume 616. Issue 12. Pages 67-72. Article in PDF file

Accepted for publication: 17.11.2023 r.

Heat pumps together with ground heat exchangers favorably shape thermal comfort in summer. This study examines whether the use of modifications to the construction and location solutions adopted in a passive standard school building in Budzów could sufficiently reduce overheating in summer, thus eliminating the need for building services. Through simulation in Design Builder, the conditions that arise for various modifications of the exterior and interior insulation systems used in the school were considered. Also analyzed were various possibilities for the orientation of the selected classroom in relation to the cardinal directions. Rotations of the school building model by 90°,180° and 270° respectively, were done. Simulations were carried out for the two-month period between May 1 and June 31. The results presented showed that the mechanical ventilation system, in combination with a source of cooling in the form of a ground heat exchanger and heat pump, can effectively reduce discomfort in summer on its own. The other suggested modifications to the building, were not as effective as ground cooling. In order to objectively assess comfort conditions, this study proposes a different and very simple way of estimating the measure of discomfort associated with overheating.
  1. Mendell MJG, Heath GA. Do indoor pollutants and thermal conditions in school’s influence student performance? Acritical review of the literature. Indoor Air. 2005; 15: 27 – 52.
  2. Mishra AK, Ramgopal M. A thermal comfort field study of naturally ventilated classrooms in Kharagpur, India, Building and Environment. 2015; Volume 92, 396 – 406.
  3.  Šenitková IJ. Indoor Air Quality and Thermal Comfort in School Buildings, World Multidisciplinary Earth Sciences Symposium (WMESS 2017), IOP Conf. Series: Earth and Environmental Science 95(4), 2017.
  4. Singh MK, Ooka R, Rijal HB. Thermal comfort in classrooms: a critical review, 10thWindsor Conference 2018: Rethinking Comfort, 12th–15th April 2018, Cumberland Lodge, The Great Park, Windsor, Berkshire SL4 2HP. Published in Conference Proceedings pp 649 – 668, ISBN-978-0-9928957-8-5.
  5.  Singh MK, Ooka R, Rijal HB, Mahapatra S, Kumar S, Kumar A. Progress in thermal comfort studies in classrooms over last 50 years and way forward. Energy and Buildings. 2019.
  6. Tagliabue LCh, Accardo D, Kontoleon KJ. Ciribini A.L.C., Indoor comfort conditions assessment in educational buildings with respect to adaptive comfort standards in European climate zones, IOP Conf. Series: Earth and Environmental Science 410 (2020) 012094, SBE19 Thessaloniki
  7. Wargocki P, Wyon DP. Providing better thermal and air quality conditions in school classrooms would be cost-effective, Build. Environ. 2013; 59: 581 – 589.
  8. Yang Z, Becerik-Gerber B, Mino L. A study on student perceptions of higher education classrooms: impact of classroom attributes on student satisfaction and performance. Build. Environ. 2013; 70: 171 – 188.
  9. Zomorodiana ZS, Tahsildoosta M, Hafezi M. Thermal comfort in educational buildings: A review article, Renewable and Sustainable Energy Reviews. 2016; Volume 59: 895 – 906.
  10. Projekt wykonawczy gminnej szkoły podstawowej w Budzowie – Architektura, arch. Bożeny Bończa-Tomaszewskiej z pracowni architektonicznej Bończa-Studio.
  11. Dequaire X. Passivhaus as a low-energy building standard: contribution to a typology, Energy Efficiency. 2012; 5: 377 – 391.
  12. PN-EN 1525 Kryteria środowiska wewnętrznego, obejmujące warunki cieplne, jakość powietrza wewnętrznego, oświetlenie i hałas.
  13. Sadłowska-Sałęga A. Materiały pomocnicze do ćwiczeń z przedmiotu; Ogrzewnictwo, wentylacja i klimatyzacja II, rozdział III; bilans cieplny budynku, Uniwersytet Rolniczy, Kraków.
  14.  Santamours M. Passive Cooling of Buildings,Advances of Solar Energy, 2005, ISES, James and James Science Publishers, London.
  15. Idczak M, Firląg Sz. Okna w budynkach pasywnych – funkcje, wymagania, bilans energetyczny, komfort cieplny, Instytut Budynków Pasywnych przy Narodowej Agencji Poszanowania Energii S.A. Warszawa.
  16.  Dąbrowska A. Budownictwo energooszczędne i pasywne. Katalog dobrych przykładów, Warszawa 2015.
  17.  Firląg Sz, Schnieders J. Budynek pasywny w centralnej Polsce, https://docplayer.pl/14372679- Budynek-pasywny-w-centralnej-polsce.html.
  18.  Kisilewicz T. Przegrzewanie budynków niskoenergetycznych. Napędy i sterowanie. 2013; str. 65 – 69.
  19.  Zielonko-Jung K. Relacja przeszkleń do powierzchni pełnych w budynkach o obniżonym zapotrzebowaniu na energię, Inżynier Budownictwa, Dodatek specjalny IB – Elewacje i docieplenia. 2013; str. 64 – 68.
  20. Figielek A, Królczyk B. Budynki pasywne, WIDP Wielkopolski Dom Pasywny. 2015, Poznań.
dr inż. Anna Dudzińska, Politechnika Krakowska, Wydział Inżynierii Lądowej ORCID: 0000-0003-1349-6108
dr inż. arch. Ewelina Panasiuk, Politechnika Krakowska, Wydział Architektury ORCID: 0000-0001-8848-3542

dr inż. Anna Dudzińska, Politechnika Krakowska, Wydział Inżynierii Lądowej ORCID: 0000-0003-1349-6108

anna.dudzinska@pk.edu.pl

Full paper:

DOI: 10.15199/33.2023.12.14

Article in PDF file

Article in English PDF file