The performance of concrete cover as a thermal insulation for BFRP bars in tension at early stage of fire


openaccess, Vol. 633 (5) 2025 / czwartek, 22 maja, 2025

Zastosowanie otuliny betonowej jako izolacji termicznej prętów BFRP podczas rozciągania we wczesnej fazie pożaru

(Open Access)

DOI: 10.15199/33.2025.05.02

citation/cytuj: Wydra M., Sadowski G., Dolny P., Turkowski P., Fangrat J. The performance of concrete cover as a thermal insulation for BFRP bars in tension at early stage of fire. Materiały Budowlane. 2025. Volume 633. Issue 05. Pages 10-15. DOI: 10.15199/33.2025.05.02

Despite multiple beneficial mechanical properties and low ecological impact, limited recognition of the properties of relatively new Basalt Fibre Reinforced Polymer (BFRP) reinforcement bars, especially at elevated and high temperature range, still limits the area of their potential applications in building structures. In this study the performance of such bars in tension during heating up to 200°C in steady state regime, and the performance of concrete cover were investigated. Due to limited data available in terms of elasticity modulus values changes for FRP at elevated temperatures, the Digital Image Correlation (DIC) was used for strain analysis in this study. There was no clearly positive influence of concrete cover on the maximum value of observed stresses. This may be attributed to the loss of bond between concrete and BFRP bars, as well as negligible values of registered strains at the concrete surface were registered.

Pomimo wielu korzystnych właściwości mechanicznych i niewielkiego wpływu na środowisko, niedostateczne rozpoznanie właściwości stosunkowo nowych prętów zbrojeniowych z polimeru wzmocnionego włóknem bazaltowym (ang. Basalt Fibre Reinforced Polymer – BFRP), szczególnie w podwyższonej i wysokiej temperaturze, nadal ogranicza obszar ich potencjalnego zastosowania w konstrukcjach budowlanych. W pracy prezentowanej w artykule zbadano charakterystykę takich prętów przy rozciąganiu podczas nagrzewania do 200°C w stanie ustalonym oraz skuteczność ich otuliny betonowej. Ze względu na ograniczoną liczbę dostępnych danych dotyczących zmian wartości modułu sprężystości BFRP w podwyższonej temperaturze, do analizy odkształceń w tym badaniu wykorzystano cyfrową korelację obrazu (ang. Digital Image Correlation – DIC). Nie zaobserwowano pozytywnego wpływu otuliny na maksymalną wartość naprężeń, co można przypisać utracie wiązania między otuliną a prętami BFRP. Ponadto zarejestrowano znikome wartości odkształceń na powierzchni betonu.
Basalt Fibre Reinforced Polymer; bars; temperature; fire.

polimer wzmocniony włóknem bazaltowym; pręty zbrojeniowe; temperatura; pożar.
  1. Maraveas C, Miamis K, Vrakas AA. Fiber-reinforced polymer-strengthened/reinforced concrete structures exposed to fire:Areview. Struct. Eng. Int. J. Int. Assoc. Bridg. Struct. Eng. 2012; DOI: 10.2749/101686612X13363929517613.
  2. Firmo JP, Correia JR, Bisby LA. Fire behaviour of FRP-strengthened reinforced concrete structural elements: A state-of-the-art review. Compos. Part B Eng. 2015; DOI: 10.1016/j.compositesb. 2015.05.045.
  3. Naser MZ, Hawileh RA, Abdalla JA. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Eng. Struct. 2019; DOI: 10.1016/j.engstruct.2019.109542.
  4. CSA-S806-02Design and construction of building componentswith fibre-reinforced polymers. Ontario: Canadian Standards Association, 2002.
  5. CAN/CSA-S6-06 Canadian highway bridge design code. Ontario: Canadian Standards Association, 2006.
  6. ACI 440.1R-06 Guide for the design and construction of concrete reinforced with FRP bars.ACI Comittee 440,American Concrete Institute (ACI), 2006.
  7.  JSCE Recommendation for design and construction of concrete structures using continous fiber reinforcing materials. Tokyo: Research Comittee on Continous Fiber Reinforcin Mateials, Japan Society of Civil Engineers, 1997.
  8. CNR-DT 203/2006 Guide for the design and construction of concrete structures reinforcedwith fiber-reinforced polymer bars. Rome:National Research Council, 2006.
  9. Burgoyne C et al., Technical report: FRP (Fibre Reinforced Polymer) reinforcement in RC structures. fédération internationale du béton (fib). 2007; DOI: 10.1371/journal.pntd. 0001792.
  10. Walraven J. fib Model Code for Concrete Structures 2010:mastering challenges and encountering new ones, Structural Concrete. Wiley Online Library. 2013. [Online]. Available: 10.1002/suco. 201200062
  11. EN 1992-1-1:2023, Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings.
  12.  Najafabadi EP, Oskouei AV, Khaneghahi MH, Shoaei P, Ozbakkaloglu T. The tensile performance of FRP bars embedded in concrete under elevated temperatures. Constr. Build. Mater. 2019;DOI: 10.1016/j. conbuildmat. 2019.03.239.
  13. EN 12390-3:2019 Testing hardened concrete – Part 3: Compressive strength of test specimens. 2019.
  14. EN 12390-6:2011 Testing hardened concrete – Part 6: Tensile splitting strength of test specimens. 2011.
  15. EN 12390-5:2019 Testing hardened concrete – Part 5: Flexural strength of test specimens. 2019.
  16. Prałat K, Ciemnicka J, Koper A, Buczkowska KE, Łoś P. Comparison of the Thermal Properties of Geopolymer and Modified Gypsum. Polymers (Basel). 2021; DOI: 10.3390/polym13081220.
  17. Wydra M, PhD thesis: Fire resistance of concrete columns reinforced with BFRP bars. 2023.
  18.  Wydra Met al. Basalt Fibre Reinforced Polymer bars asmain reinforcement of axially compressed concrete column – experimental and numerical considerations of fire resistance. Fire Saf. J. 2023; DOI: 10.1016/j. firesaf. 2023.103898.
  19. Wydra M, Dolny P, Sadowski G, Grochowska N, Turkowski P, Fangrat J. Analysis of Thermal and Mechanical Parameters of the BFRP bars.Mater. Proc. 2023, [Online]. Available: https://doi. org/10.3390/materproc2023013024.
  20.  Li C, Gao D, Wang Y, Tang J. Effect of high temperature on the bond performance between basalt fibre reinforced polymer (BFRP) bars and concrete. Constr. Build. Mater. 2017; DOI: 10.1016/j. conbuildmat. 2017.02.125.
  21. Rami Hamad JA, Megat JohariMA, Haddad RH. Mechanical properties and bond characteristics of different fiber reinforced polymer rebars at elevated temperatures. Constr. Build. Mater. 2017;DOI: 10.1016/j. conbuildmat. 2017.03.113.
  22.  Rosa IC, Firmo JP, Correia JR, Barros JAO. Bond behaviour of sand coated GFRP bars to concrete at elevated temperature – Definition of bond vs. slip relations. Compos. Part B Eng. 2019; DOI: 10.1016/j.compositesb. 2018.10.020.
  23.  Hajiloo H, Green MR, Gale J. Mechanical properties of GFRP reinforcing bars at high temperatures. Constr. Build. Mater. 2018; DOI: 10.1016/j. conbuildmat. 2017.12.025.
  24. Ashrafi H, Bazli M, Najafabadi EP, Vatani Oskouei A. The effect of mechanical and thermal properties of FRP bars on their tensile performance under elevated temperatures. Constr. Build. Mater. 2017; DOI: 10.1016/j.conbuildmat. 2017.09.160.
dr inż. Małgorzata Wydra, University of Michigan, Ann Arbor, United States of America
ORCID: 0000-0002-4629-9656
dr inż. Grzegorz Sadowski, Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry
ORCID: 0000-0001-6441-0875
dr inż. Piotr Dolny, Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry
ORCID: 0000-0002-5384-9257
dr inż. Piotr Turkowski, Building Research Institute
ORCID: 0000-0002-0020-0091
dr hab. inż. Jadwiga Fangrat, prof. ITB, Building Research Institute
ORCID: 0000-0002-7871-0032

dr inż. Małgorzata Wydra, University of Michigan, Ann Arbor, United States of America
ORCID: 0000-0002-4629-9656

Correspondence address: malgorzata.wydra@pw.edu.pl

Full paper:

DOI: 10.15199/33.2025.05.02

Article in PDF file

Received: 03.01.2025 / Artykuł wpłynął do redakcji: 03.01.2025 r.
Revised: 10.03.2025 / Otrzymano poprawiony po recenzjach: 10.03.2025 r.
Published: 22.05.2025 / Opublikowano: 22.05.2025 r.