Water vapour transport between buildings materials and indoor air

openaccess, Vol. 557 (1) 2019 / wtorek, 22 stycznia, 2019
[Open Access]

M. Mijakowski

DOI: 10.15199/33.2019.01.05

Volume 557: Issue 1
Pages 34-36
Accepted for publication: 19.12.2018 r.

In the paper the issues the regarding transport (exchange) of moisture between air and hygroscopic building materials and interior furnishings have been presented. The hygroscopic properties of porousmaterials and a simplifiedmodel of interaction of porous material with the surrounding air have been described. Then, the influence of interior furnishing materials and building partitions on indoor air humidity has been characterized. This set the basis for determining the possibility of using the hygroscopic capacity of the building to shape the humidity conditions in the rooms.

Keywords: porous material; hygroscopic; moisture transport; indoor relative humidity.
[1] ASHRAE Handbook, Fundamentals, SI Editions, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, 1997.
[2] ASHRAE Handbook, HVAC Applications, SI Editions, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, 1995.
[3] Axley J. 1991. „Reversible sorption modelling for multi-zone contaminant dispersal analysis”. Proceedings of Building Simulation ‘91: 20 – 28, Nice, France; August 20 – 22.
[4] Burch D.M., J. Chi. 1997.MOIST a PC program for predicting heat and moisture transfer in building envelops. Release 3.0, National Institute of Standards and Technology, Washington.
[5] Emmerich S. J.,A. K. Persily, S. J. Nabinger. 2002. „Modelling moisture in residential buildings with a multizone IAQ program, Indoor Air 2002”. Proceedings: 9th International Conference on IAQ and Climate. Monterey, California, June 30 – July 5, 2002
[6] Haupl P., H. Fechner, J. Grunewald, H. Petzold. 2001. The thermal improvement of a wooden framework house by means of a capillary active inside insulation, Materiały Konferencyjne VIII Polskiej Konferencji Naukowo-Technicznej Fizyka Budowli w Teorii i Praktyce. Łódź.
[7] Kubik Jan. 2000. Przepływy wilgoci w materiałach budowlanych. Opole. Oficyna Wydawnicza Politechniki Opolskiej.
[8] Künzel H. M. 1996. WUFI: Simultaneous heat and moisture transport in building components, Fraunhofer Institut Bauphysik, Stuttgart.
[9] Michałowski S., K. Wańkowicz. 1993. Termodynamika procesowa. Warszawa. WNT.
[10] Mijakowski Maciej. 2003. Akumulacja pary wodnej w materiałach porowatych – uproszczona metoda obliczeniowa na potrzeby bilansowania wilgoci w powietrzu pomieszczeń. IX Polska Konferencja Naukowo-Techniczna „Fizyka Budowli w Teorii i Praktyce”. Łódź, str. 485 – 492.
[11] Mijakowski Maciej. 2005. „Symulacja wilgotności powietrza w budynku jednorodzinnym z uwzględnieniem akumulacji pary wodnej”. Fizyka Budowli w Teorii i Praktyce, Czasopismo Naukowe, Tom 1: 265 – 272. Łódź.
[12] Mijakowski Maciej, Jerzy Kwiatkowski. 2010. Moisture flow between indoor air and porous materials – simplified two parameters method and detailed TRNSYS simulation, Proceedings of the 1st Central European Symposium on Building Physics, edited by D. Gawin, T. Kisilewicz, str. 395 – 400, Cracow – Lodz, Poland. [13] Patfield Tim. 1998. The role of absorbent building materials in moderating changes of relative humidity, Ph. D. thesis, The Technical University of Denmark, Lyngby, Denmark.
[14] Pedersen C. Rode. 1989. Combined heat and moisture transfer in building constructions. Dissertation, Denmark Technical University.
[15] Plathner P., J. Littler., R. Stephen. 1999. Dynamic water vapour sorption: Measurement and modelling, The 8th International Conference on IndoorAir Quality and Climate, IndoorAir 99 1, Edinburgh.
[16] Straube J. F., J. P. de Graauw. 2001. Indoor air quality and hy-groscopically activematerials, ASHRAE Transactions, Vol. 107, Pt 1.
dr inż. Maciej Mijakowski, Politechnika Warszawska; Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska

dr inż. Maciej Mijakowski maciej.mijakowski@pw.edu.pl