The influence of the precast and overtopping cross-section joint on the static behaviour of composite concrete beams 


openaccess, Vol. 596 (4) 2022 / czwartek, 28 kwietnia, 2022

(Open Access)

DOI: 10.15199/33.2022.04.07

Zając Jakub, Drobiec Łukasz, Grzyb Krzysztof, Kisiołek Artur. 2022. The influence of the precast and overtopping cross-section joint on the static behaviour of composite concrete beams. Volume 596. Issue 4. Pages 40-44. Article in PDF file

Accepted for publication: 11.04.2022 r.

The article presents a study of composite prestressed beams. The scope of the research is to determine the influence of the shape of the interface cross-section joint on the static work of the beams. The elements were divided into beams with a natural joint surface and broken adhesion in contact. Preliminary tests were done on the beams with a rectangular cross-section and a flat interface surface. The leading research focused on beams with complex cross-sections. It has been proven experimentaly the beam, made of a rib-shaped precast element with broken adhesion, worked as partially composite from the beginning of the test. Before the first vertical crack occurred, the bending stiffness of the elementwith a broke adhesion interfacewas 14.9% lower than that of a fully bonded beam. In both beams, vertical cracks connect with cracks in the interface. Beams load capacity were achieved due to the crushing of the compression zone of the concrete overlay.
  1. Ajdukiewicz A, Węglorz M, Kliszczewicz A. Experimental study on effectiveness of interaction between pre-tensioned hollow-core slabs and concrete topping.Architecture Civil Engineering Environment. 2008; 1, 1: 57 – 66.
  2. Mones RM, Brena SF. Hollow-core slabs with cast-in-place concrete toppings: A study of interfacial shear strength. PCI Journal. 2013; 58, 1: 124 – 141. doi: 10.15554/pcij.06012013.124.141.
  3. AdawiA,YoussefMA,MeshalyME. Experimental investigation of the composite action between hollowcore slabs with machine-cast finish and concrete topping. Engineering Structures. 2015; 91: 1 – 15. doi: 10.1016/j.engstruct.2015.02.018.
  4. Derkowski W, Surma M. Composite Action of Precast Hollow Core Slabs With Structural Topping. Technical Transactions. 2015; 3-B: 15 – 29. doi: 10.4467/2353737XCT. 15.159.4334.
  5. DerkowskiW, Surma M. Pretensioned beam-and- -block floor systems – real scale tests.TechnicalTransactions. Civil Engineering. 2012; 109: 35 – 49.
  6. HalickaA.Analysis of support zones in composite concrete beams using MCFT. Archives of Civil andMechanical Engineering. 2006; 6, 4: 49 – 66. doi: 10.1016/S1644-9665 (12) 60275-1.
  7. Halicka A, Jabłoński Ł. Shear failure mechanism of composite concrete T-shaped beams. Proceedings of the Institution of Civil Engineers – Structures and Buildings. 2016; 169, 1: 67 – 75. doi: 10.1680/stbu.14.00127.
  8. Jabłoński Ł, HalickaA. Influence of surface based cohesive parameters on static performance of concrete composite T-shaped beams.MATECWeb of Conferences. 2019; 262: 08003. doi: 10.1051/matecconf/ 201926208003.
  9. HalickaA. Influence new-to-old concrete interface qualities on the behaviour of support zones of composite concrete beams.Construction andBuildingMaterials. 2011; 25, 10: 4072 – 4078. doi: 10.1016/j.conbuildmat. 2011.04.045.
  10. Gromysz K. Distribution of Forces in Composite ConcreteSlabsBetweenthe Joint andtheReinforcement Anchored on the Support. Procedia Engineering. 2013; 65: 206 – 211. doi: 10.1016/j.proeng.2013.09.031.
  11.  Gromysz K. Verification of the Damping Model Vibrations of Reinforced Concrete Composite Slabs. Procedia Engineering. 2013; 57: 372 – 381. doi: 10.1016/j.proeng. 2013.04.049.
  12.  Lebet JP.NewSteel-Concrete ShearConnection for Composite Bridges. Composite Construction in Steel and Concrete VI – Proceedings of the 2008 Composite Construction in Steel and Concrete Conference. 2011; pp. 65 – 77. doi: 10.1061/41142(396)6.
mgr inż. Jakub Zając, Politechnika Śląska; Wydział Budownictwa ORCID: 0000-0001-6080-2994
prof. dr hab. inż. Łukasz Drobiec, Politechnika Śląska; Wydział Budownictwa ORCID: 0000-0001-9825-6343
mgr inż. Krzysztof Grzyb, Politechnika Śląska; Wydział Budownictwa ORCID: 0000-0001-9039-5015
dr inż. Artur Kisiołek, Wielkopolska Wyższa Szkoła Społeczno-Ekonomiczna; Wydział Ekonomiczny ORCID: 0000-0002-8815-6776

mgr inż. Jakub Zając, Politechnika Śląska; Wydział Budownictwa ORCID: 0000-0001-6080-2994

 jakub.zajac@polsl.pl

Full paper:

DOI: 10.15199/33.2022.04.07

Article in PDF file