The influence of recycled ceramic aggregate on the strength characteristics of high-performance concrete


openaccess, Vol. 618 (2) 2024 / piątek, 23 lutego, 2024

(Open Access)

DOI: 10.15199/33.2024.02.08

Gasik-Kowalska Natalia, Koper Artur, Wieszczyńska Paulina, Lisiecka Patrycja, Syska Patrycja. 2024. The influence of recycled ceramic aggregate on the strength characteristics of high-performance concrete. Volume 618. Issue 2. Pages 39-44. Article in PDF file

Accepted for publication: 30.01.2024 r.

The construction sector, especially the production of such a commonly used material as concrete, requires the implementation of solutions that reduce the carbon footprint. This is possible, among other things, by replacing coarse natural aggregate with secondary materials. The article presents the results of testing the strength characteristics of concrete, which the granite aggregate was replaced with recycled aggregate originating from the crushing of ceramic elements of sanitary fittings.
  1. Benachio GLF, Freitas MDCD, Tavares SF. Circular economy in the construction industry: A systematic literature review. Journal of cleaner production. 2020; https://doi.org/10.1016/j.jclepro.2020.121046.
  2. Silva RV, De Brito J, Dhir RK. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials. 2014; https://doi. org/10.1016/j.conbuildmat. 2014.04.117.
  3. Norouzi M, Chàfer M, Cabeza LF, Jiménez L, Boer D. Circular economy in the building and construction sector: A scientific evolution analysis. Journal of Building Engineering. 2021; https://doi.org/10.1016/j.jobe. 2021.102704.
  4. Berndt ML. Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Construction and buildingmaterials. 2009; https://doi.org/10.1016/j.conbuildmat.2009.02.011.
  5. Etxeberria M, Vázquez E, Marí A, Barra M. Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cement and concrete research. 2007; https://doi.org/10.1016/j.cemconres.2007.02.002.
  6. LuW, Yuan H. Aframework for understanding waste management studies in construction. Waste management. 2011; https://doi. org/10.1016/j. wasman. 2011.01.018.
  7.  Mansur MA,Wee TH, Lee SC. Crushed bricks as coarse aggregate for concrete. Materials Journal. https://doi. org/10.14359/649.
  8.  Pacheco-Torgal F, Jalali S. Reusing ceramic wastes in concrete. Construction and building materials. 2010; https://doi.org/10.1016/j.conbuildmat. 2009.10.023.
  9. Awoyera PO, Akinmusuru JO, Ndambuki JM. The performance of ceramic tile wastes as substitute for natural aggregates in laterised concrete. Key Engineering Materials, 2016.
  10.  Magbool HM. Utilisation of ceramic waste aggregate and its effect on Eco-friendly concrete:Areview. Journal of Building Engineering. 2022; https://doi. org/10.1016/j. jobe. 2021.103815.
  11. Medina C, Frías M, De Rojas M. S. Microstructure and properties of recycled concretes using ceramic sanitary ware industry waste as coarse aggregate. Construction and Building Materials. 2012; https://doi. org/10.1016/j. conbuildmat. 2011.12.075.
  12.  Zegardło B, Szeląg M, Ogrodnik P. Ultra-high strength concrete made with recycled aggregate from sanitary ceramic wastes–The method of production and the interfacial transition zone. Construction and Building Materials. 2016; https://doi.org/10.1016/j.conbuildmat. 2016.06.112.
  13.  Medina C, Banfill PFG, De Rojas MS, Frías M. Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Construction and Building Materials. 2013; https://doi. org/10.1016/j. conbuildmat. 2012.11.112.
  14. Halicka A, Ogrodnik P, Zegardlo B. Using ceramic sanitary ware waste as concrete aggregate. Construction and Building Materials. 2013; https://doi. org/10.1016/j. conbuildmat. 2013.06.063.
  15.  Guerra I, Vivar I, Llamas B, Juan A, Moran J. Eco-efficient concretes: The effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete. Waste management. 2009; https://doi. org/10.1016/j. wasman. 2008.06.018.
  16.  Ogrodnik P, Szulej J. The impact of aeration of concrete based on ceramic aggregate, exposed to high temperatures, on its strength parameters. Construction and BuildingMaterials. 2017; https://doi. org/10.1016/j. conbuildmat. 2017.09.155.
  17.  PN-EN 1992-1-1:2008 Eurokod 2 – Projektowanie konstrukcji z betonu – Część 1-1: Reguły ogólne i reguły dla budynków. Eurocode 2: Design of concreto structures – Part 1-1: General rules and rules for buildings.
  18.  Medina C, De Rojas MS, Thomas C, Polanco JA, Frías M. Durability of recycled concrete made with recycled ceramic sanitary ware aggregate. Inter-indicator relationships. Construction and Building Materials. 2016; https://doi. org/10.1016/j. conbuildmat. 2015.12.176.
  19. PN-EN 12350-2:2019-07 Badania mieszanki betonowej – Część 2: Badanie konsystencji metodą opadu stożka. Testing fresh concrete– Part 2: Slump test.
  20. PN-EN 12390-2:2019-07 Badania betonu – Część 2: Wykonywanie i pielęgnacja próbek do badań wytrzymałościowych. Testing hardened concrete – Part 2: Making and curing specimens for strength tests.
  21.  PN-EN 12390-7:2019-08 Badania betonu – Część 7: Gęstość betonu.
  22.  PN-EN 12390-3:2019-07 Badania betonu – Część 3: Wytrzymałość na ściskanie próbek do badań. Testing hardened concrete – Part 3: Compressive strength of test specimens.
  23.  PN-EN 12390-6:2011 Badania betonu – Część 6: Wytrzymałość na rozciąganie przy rozłupywaniu próbek do badań. Testing hardened concrete – Part 6: Tensile splitting strength of test specimens.
  24.  Jamroży Z. Beton i jego technologie. Wydawnictwo naukowe PWN. 2020.
  25.  PN-EN 12390-5:2019-08 Badania betonu – Część 5: Wytrzymałość na zginanie próbek do badań. Testing hardened concrete – Part 5: Flexural strength of test specimens.
  26.  PN-EN 12390-13:2021-12 Badania betonu – Część 13: Wyznaczanie siecznego modułu sprężystości przy ściskaniu. Testing hardened concrete – Part 13: Determination of secant modulus of elasticity in compression.
  27. Michałek J. Wyznaczanie modułu sprężystości betonu przy ściskaniu. Materiały Budowlane. 2015; https://doi.org/10.15199/33.2015.06.23.
  28.  PN-EN 206+A2:2021-08 Beton –Wymagania, właściwości użytkowe, produkcja i zgodność. Concrete – Secification, performance, production and conformity.
mgr inż. Natalia Gasik-Kowalska, Politechnika Warszawska, Wydział Budownictwa Mechaniki i Petrochemii w Płocku ORCID: 0009-0008-4972-4487
dr inż. Artur Koper, Politechnika Warszawska, Wydział Budownictwa Mechaniki i Petrochemii w Płocku ORCID: 0000-0003-4922-0816
Paulina Wieszczyńska, Politechnika Warszawska, Wydział Budownictwa Mechaniki i Petrochemii w Płocku
Patrycja Lisiecka, Politechnika Warszawska, Wydział Budownictwa Mechaniki i Petrochemii w Płocku
Patrycja Syska, Politechnika Warszawska, Wydział Budownictwa Mechaniki i Petrochemii w Płocku

mgr inż. Natalia Gasik-Kowalska, Politechnika Warszawska, Wydział Budownictwa Mechaniki i Petrochemii w Płocku ORCID: 0009-0008-4972-4487

natalia.kowalska@pw.edu.pl

Full paper:

DOI: 10.15199/33.2024.02.08

Article in PDF file

Article in English PDF file