Local analysis of the cracked sharp corner of the prestressed bridge structure in terms of the service loads


openaccess, Vol. 602 (10) 2022 / czwartek, 27 października, 2022

(Open Access)

Betlej Michał, Ciurej Henryk, Gwoździewicz Piotr. 2022. Local analysis of the cracked sharp corner of the prestressed bridge structure in terms of the service loads. Volume 602. Issue 10. Pages 104-109. DOI: 10.15199/33.2022.10.26

Accepted for publication: 7.08.2022 r.

The subject of the analysis is a real bridge deck composed of beams and slab with an unusual geometry, where support angle is at approx. 40°.After the girders were prestressed, the cracks within the sharp angles were noticed on the upper and lower surfaces of the deck. The aim of this article is to present the result of a local analysis of the sharp angle of the deck in the aspect of the impact of operating loads on the existing state of cracks. A FEM model was developed, based entirely on volume elements. Nonlinear analysis were used with the concrete crack model. The process and sequence of prestressing and the application of the remaining loads is considered. On each of them, a state of stress and cracking in the deck was observed. It was concluded that cracks resulting from improper introduction of prestress are closing under the influence of permanent and service loads.
  1. Lusas Manuals, v. 19.1, LUSAS FEA Ltd. London, 2021.
  2. Marks M. Analiza i optymalizacja kompozytów uzbrojonych dwiema rodzinami włókien. IPPT PAN Komitet Inżynierii Lądowej i Wodnej. Studia z zakresu inżynierii. 2003 (49),Warszawa.
  3. German J. Podstawy mechaniki kompozytów włóknistych. Politechnika Krakowska. Kraków 1996.
  4. Jefferson AD. Craft – a plastic-damage- -contact model for concrete. Part I.Model theory and thermodynamic considerations. International Journal of Solids and Structures. 2003. https://doi.org/10.1016/S0020-7683(03)00390-1.
  5. JeffersonAD. Craft – a plastic-damage-contact model for concrete. Part II. Model implementation with implicit return-mapping algorithm and consistent tangent matrix. International Journal of Solids and Structures. 2003. https://doi.org/10.1016/S0020-7683(03)00391-3.
  6. fibModel Code for Concrete Structures 2010. CEB-FIB, Ernst & Sohn. Berlin, 2013.
  7. PN-85/S-10030.Obiektymostowe.Obciążenia.
  8. Rybak M. Obciążenia mostów. Komentarz do PN-85/S-10030. 1989. WKŁ. Warszawa.
dr inż. Michał Betlej, Akademia Górniczo-Hutnicza, Wydział Inżynierii Lądowej i Gospodarki Zasobami ORCID: 0000-0001-7631-0134
dr inż. Henryk Ciurej, Akademia Górniczo-Hutnicza, Wydział Inżynierii Lądowej i Gospodarki Zasobami ORCID: 0000-0003-4017-6185
dr inż. Piotr Gwoździewicz, Politechnika Krakowska, Wydział Inżynierii Lądowej ORCID: 0000-0002-8161-3612

dr inż. Henryk Ciurej, Akademia Górniczo-Hutnicza, Wydział Inżynierii Lądowej i Gospodarki Zasobami ORCID: 0000-0003-4017-6185

hciurej@agh.edu.pl