Influence of the thermal barrier on the energy efficiency of double glazing


openaccess, Vol. 613 (9) 2023 / środa, 27 września, 2023

(Open Access)

DOI: 10.15199/33.2023.09.13

Pavlenko Anatoliy, Piotrowski Jerzy Zb., Stępień Anna, Ciosek Anita, Sadko Karolina. 2023. Influence of the thermal barrier on the energy efficiency of double glazing. Volume 613. Issue 9. Pages 54-57. Article in PDF file

Accepted for publication: 22.08.2023 r.

Despite technological progress, the window and its most important component – double glazing – is the weakest insulating link of the entire building envelope.At the Technology University of Kielce, research has begun on improving the insulation of double glazing through the use of heating elements in the inner chamber between the panes, creating the so-called thermal barrier. The focus of the article is to show the possibility of increasing the temperature of the glazing unit, to carry out numerical and experimental analysis, to assess the energy balance, assuming that the thermal barrier will be powered by renewable energy.
  1. Rozporządzenie Ministra Infrastruktury z 12 kwietnia 2002 r. – Warunki techniczne, jakim powinny odpowiadać budynki i ich usytuowanie Dz.U. 2022 poz. 1225 t. j.
  2. Biernacki K, Piotrowski JZ. Aktywne fasadowe systemy ociepleń. Materiały Budowlane. 2017; https://doi. org/10.15199/33.2017.01.07.
  3.  Piotrowski JZ, Orman LJ i inni. Test of thermal resistance of simulated walls with the reflective insulation. EFM13 – Experimental Fluid Mechanics 2013 67. 2014; 569 – 572.
  4.  Krechowicz M, Piotrowski JZ. Comprehensive risk management in passive buildings projects. Energies. 2021; https://doi.org/10.3390/en14206830.
  5. Sun Y, Wu Y, Wilson R. A review of thermal and optical characterisation of complex window systems andtheir building performance prediction.Appl. Energy. 2018; https://doi.org/10.1016/j.apenergy. 2018.03.144.
  6.  GorantlaK, Shaik S, SettyAB. Effects of single, double, triple and quadruple window glazing of various glass materials on heat gain in green energy buildings. Energy and Environment Engineering. 2017; https://doi. org/10.1007/978-981-10-2675-1_5.
  7. Arıcı M, Karabay H, Kan M. Flow and heat transfer in double, triple and quadruple panewindows, Energy Build. 2015; https://doi.org/10.1016/j.enbuild. 2014.10.043.
  8.  Arıcı M, Kan M. An investigation of flow and conjugate heat transfer in multiple pane windows with respect to gap width, emissivity and gas filling. Renewable Energy. 2015; https://doi.org/10.1016/j.renene. 2014.10.004.
  9.  Ismail KA, Salinas CT, Henríquez JR. A comparative study of naturally ventilated and gas filled windows for hot climates. Energy Convers. Manage. 2009; https://doi.org/10.1016/j.enconman. 2009.03.026.
  10. Park S, Song S-Y. Evaluation ofAlternatives for Improving the Thermal Resistance of Window Glazing Edges, Energies. 2019; https://doi. org/10.3390/en12020244.
  11. Pal S, Roy B, Neogi S. Heat transfer modelling on windows and glazing under the exposure of solar radiation. Energy and Buildings. 2009; https://doi. org/10.1016/j.enbuild. 2009.01.003.
  12. Pereira J, Gomes MG, Rodrigues AM, Almeida M. Thermal, luminous and energy performance of solar control films in single-glazed windows: Use of energy performance criteria to support decision making. Energy Building. 2019; https://doi.org/10.1016/j.enbuild.2019.06.003.
  13.  Teixeira H, Gomes MG, Rodrigues AM, Pereira J. Thermal and visual comfort, energy use and environmental performance of glazing systems with solar control films. Build. Environ. 2020; https://doi.org/10.1016/j.buildenv. 2019.106474.
  14.  Basok B, Davydenko B i inni. Numerical modeling of heat transfer through a triple-pane window. Journal of Engineering Physics and Thermophysics2016; 89 (5); 1277–1283.
  15.  Basok B, Davydenko B, Novikov VG i inni. Evaluation of Heat Transfer Rates through TransparentDividing Structures. Energies. 2022; https://doi. org/10.3390/en15134910.
  16.  Piotrowski JZ, Szewczyk S i inni. Sposób nanoszenia powłoki fototermicznej na ramkę dystansową, zwłaszcza do zestawu szyb zespolonych. Politechnika Świętokrzyska; 2022; Patent Nr 241306.
prof. dr hab. inż. Anatoliy Pavlenko, Politechnika Świętokrzyska, Wydział Inżynierii Środowiska, Geodezji i Energii Odnawialnej ORCID: 0000-0002-8103-2578
prof. dr hab. inż. Jerzy Zb. Piotrowski, , Politechnika Świętokrzyska, Wydział Inżynierii Środowiska, Geodezji i Energii Odnawialnej ORCID: 0000-0002-8479-1406
dr inż. Anna Stępień, Politechnika Świętokrzyska, Wydział Budownictwa i Architektury ORCID: 0000-0001-7937-8804
mgr inż. Anita Ciosek, Politechnika Świętokrzyska, Szkoła Doktorska
mgr inż. Karolina Sadko, Politechnika Świętokrzyska, Szkoła Doktorska

prof. dr hab. inż. Jerzy Zb. Piotrowski, , Politechnika Świętokrzyska, Wydział Inżynierii Środowiska, Geodezji i Energii Odnawialnej ORCID: 0000-0002-8479-1406

piotrowski@tu.kielce.pl

Full paper:

DOI: 10.15199/33.2023.09.13

Article in PDF file