Energy efficiency of buildings made in the hemp-lime composites technology


Vol. 605 (1) 2023 / wtorek, 24 stycznia, 2023

(Open Access)

DOI: 10.15199/33.2023.01.09

Gołębiewski Michał, Pietruszka Barbara. 2023. Energy efficiency of buildings made in the hemp-lime composites technology. Volume 605. Issue 1. Pages 38-41. Article in PDF file

Accepted for publication: 13.12.2022 r.

Hemp-lime composites are the subject of intensive research due to their pro-ecological value and proven usefulness in construction applications. The subject of the article is the analysis of scientific and research works presenting the properties of this type of materials enabling energy saving during the use of the building.The collected results confirm the multifaceted potential of the composites in the discussed scope and prompt to undertake work on the implementation of solutions in domestic construction.
  1. Allin S. Building with Hemp. 2nd ed. Ireland: Seed Press; 2012.
  2. Bevan R, Woolley T. Hemp Lime Construction: A Guide to Building with Hemp Lime Composites. Bracknell: Ihs Bre Press; 2010.
  3. Stanwix W, Sparrow A. The Hempcrete Book: Designing and building with hemp-lime. Green Books; 2014.
  4. Gołębiewski M. Aspekty zastosowania kompozytów wapienno-konopnych w budownictwie indywidualnych domów mieszkalnych w architekturze proekologicznej. Praca doktorska. Politechnika Warszawska; 2020.
  5.  Brzyski P. Kompozyt wapienno-konopny jako materiał ścienny spełniający zasady zrównoważonego rozwoju w budownictwie. Praca doktorska. Politechnika Lubelska; 2018.
  6. Arnaud L, Gourlay E. Experimental Study of Parameters InfluencingMechanical Properties of Hemp Concretes. https://doi.org/10.1016/j.conbuildmat. 2011.07.052.
  7.  Collet F, Pretot S. Thermal Conductivity of hemp concretes:Variation with formulation, density and water content. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat. 2014.05.039.
  8. Gołębiewski M, Pietruszka B. Risk of interstitial condensation in outer walls made of hemp- -lime composite in Polish climatic conditions. https://doi. org/10.24425/ace. 2021.138489.
  9.  Piątkiewicz W, Narloch P, Pietruszka B. Influence of hemp-lime composite composition on its mechanical and physical properties. https://doi. org/10.24425/ace.2020.134409.
  10. Elfordy S, Lucas F, Tancret F, Scudeller Y, Goudet L. Mechanical and thermal properties of lime and hemp concrete („hempcrete”) manufactured by a projection process. https://doi. org/10.1016/j. conbuildmat. 2007.07.016.
  11.  Benfratello S, Capitano C, Peri G, Rizzo G, Scaccianoce G, Sorrentino G. Thermal and structural properties of a hemp-lime biocomposite. https://doi.org/10.1016/j.conbuildmat. 2013.07.096.
  12. Walker R, Pavia S, Mitchell R. Mechanical properties and durability of hemp – lime concretes. https://doi.org/10.1016/j.conbuildmat. 2014.02.065.
  13. Walker R, Pavia S. Moisture transfer and thermal properties of hemp – lime concretes. https://doi.org/10.1016/j.conbuildmat. 2014.04.081.
  14.  Collet F, Chamoin J, Pretot S, Lanos C. Comparison of a hygric behaviour of three hemp concretes. https://doi.org/10.1016/j.enbuild.2013.03.010.
  15.  Evrard A. Transient hygothermal behaviour of lime–hemp material. These de doctorat. Universite Catholique de Louvain; 2008.
  16.  Daly P, Ronchetti P, Woolley T. Hemp Lime Bio-composite as a Building Material in Irish Construction STRIVE Report 2009-ET-DS-2-S2. Environmental ProtectionAgency. Ireland; 2009.
  17.  Boutin M-P, Flamin C, Quinton S, Gosse G. Analyse du cycle de vie de: Compounds thermoplastiques chargés fibres de chanvre et, Mur en béton de chanvre banché sur ossature en bois. Lille; 2015.
  18.  Pervaiz M, SainMM. Carbon Storage Potential in Natural Fibre Composites. https://doi. org/10.1016/S0921-3449 (02) 00173-8.
  19. Hirst E. Characterisation of Hemp-Lime as a Composite Building Material. Ph. D. thesis. University of Bath; 2013.
  20.  Arehart JK, NelsonWS, SrubarWV. On the theoretical carbon storage and carbon sequestration potential of hempcrete. https://doi. org/10.1016/j.jclepro. 2020.121846.
  21.  Mendes N, Winkelmann FC, Lamberts R, Philippi PC.Moisture effects on conduction loads. https://doi.org/10.1016/S0378-7788 (02) 00171-8.
  22.  Evrard A, de Herde A, Minet J. Dynamical interactions between heat and mass flows in lime– hemp concrete. Third International Building Physics Conference. Montreal; 2006.
  23.  Kinnane O, Mc Granaghan G, Walker R, Pavia S, Byrne G, Robinson A. Experimental investigation of thermal inertia properties in hemp-lime concrete walls. Proceedings of the 10th Conference on Advanced Building Skins. Bern; 2015.
  24.  Pawłowski K. Analiza ścian zewnętrznych i ich złączy w aspekcie cieplno-wilgotnościowym. Aparatura badawcza i dydaktyczna. 2010; 2: 15-22.
  25. Grudzińska M, Brzyski P. The Occurrence of Thermal Bridges in Hemp-Lime Construction Junctions. https://doi.org/10.3311/PPci.13377.
  26. Brzyski P, Grudzińska M, Majerek D. Analysis of the Occurrence of Thermal Bridges in Several Variants of Connections of the Wall and the Ground Floor in Construction Technology with the Use of a Hemp–Lime Composite. https://doi. org/10.3390/ma12152392.
  27.  Haglund B, Rathmann K. Thermal mass in passive solar and energy-conserving buildings. Vital Sings Curriculum Materials Project. Berkley; 1996.
  28.  Shea A, Lawrence M, Walker P. Hygrothermal performance of an experimental hemp-lime building. https://doi.org/10.1016/j.conbuildmat.2012.04.123.
  29.  Maalouf C, Tran Le AD, Umurigirwa SB, Lachi M, Douzane O. Study of hygrothermal behaviour of a hemp concrete building envelope under summer conditions in France. https://doi. org/10.1016/j.enbuild. 2014.03.040
  30. Knaack U, Koenders E (red.). Building Physics of The Envelope. Basel: Birkhäuser; 2018.
  31. Woloszyn M, Kalamees T, Abadie MO, Steeman M, Kalagasidis AS. The effect of combining a relative-humidity-sensitive ventilation system with themoisture-buffering capacity ofmaterials on indoor climate and energy efficiency of buildings. https://doi. org/10.1016/j. buildenv. 2008.04.017.
  32.  Rode C, Peuhkuri R, Time B, Svennberg K, Ojanen T.Moisture BufferValue of BuildingMaterials. https://doi.org/10.1520/STP45403S.
  33. Tran Le A, Maalouf C, Mai TH, Wurtz E, Collet F. Transient Hygrothermal Behaviour of a Hemp Concrete Building Envelope. https://doi. org/10.1016/j.enbuild. 2010.05.016.
  34.  Antonov Y, Jensen RL, Pomianowski M. Hemp-Lime Performance in Danish Climatic Context. Thermal Conductivity as a Function of Moisture Content. CLIMA2016 – proceedings of the 12th REHVAWorld Congress vol. 2.Aalborg; 2006.
  35.  Pinkos J. The Effectiveness of Hempcrete as an Infill Insulation in the Prairies Compared to a Standard Building Based on Power Consumption. M. Sc. thesis. University of Manitoba; 2014.
  36.  Shang Y, Tariku F. Hempcrete building performance in mild and cold climates: Integrated analysis of carbon footprint, energy, and indoor thermal and moisture buffering. https://doi. org/10.1016/j.buildenv.2021.108377.
dr inż. arch. Michał Gołębiewski, Politechnika Warszawska, Wydział Architektury ORCID: 0000-0001-7206-0369 dr Barbara Pietruszka, Instytut Techniki Budowlanej, Zakład Fizyki Cieplnej, Akustyki i Środowiska ORCID: 0000-0003-3268-7997

dr inż. arch. Michał Gołębiewski, Politechnika Warszawska, Wydział Architektury ORCID: 0000-0001-7206-0369

michal.golebiewski@pw.edu.pl

Full paper:

DOI: 10.15199/33.2023.01.09

Article in PDF file