Energy analyses of 6D BIM models


openaccess, Vol. 600 (8) 2022 / wtorek, 23 sierpnia, 2022

(Open Access)

DOI: 10.15199/33.2022.08.07

Borkowski Andrzej Szymon, Osińska Natalia, Szymańska Natalia. 2022. Energy analyses of 6D BIM models. Volume 600. Issue 8. Pages 52-56. Article in PDF file

Accepted for publication: 22.07.2022 r.

The main direction of development of modern architecture and construction is creation of ecological and sustainable buildings and reduction their negative impact on the environment. Understanding energy aspects in the construction industry is one of the topics considered and discussed when working on innovative construction technologies, career and education of engineers in the 21st century. The use of BIM technology contributes significantly to the energy efficiency of buildings and helps architects and designers to understand the environmental impact of their decisions. The aim of this paper was to present the possibility of prepare an energy analyses of buildings using BIM technology. Three-dimensional BIM models complete with energy parameters, on the basis of which precise energy reports are generated, provide key information for optimizing energy consumption during the design, construction and operation phases of a building and are called Level 6D BIM models. The data obtained from such models can be used to determine the so-called carbon footprint.
  1. Kasznia D, Magiera J, Wierzowiecki P. BIM w praktyce. Warszawa. Wydawnictwo Naukowe PWN; 2017.
  2. Komisja Europejska. 2020. Efektywność energetyczna budynków, , [dostęp 24.05.2022];
  3. McArthur JJ.Abuilding informationmanagement (BIM) framework and supporting case study for existing building operations, maintenance and sustainability. International Conference on Sustainable Design, Engineering and Construction. 2015; doi: 10.1016/j.proeng.2015.08.450.
  4. MohantaA, Das S. BIMas facilities management tool: a brief review. The 7th International Conference on Sustainable Built Environment, Earl’s Regency Hotel, Kandy, Sri Lanka from 16th to 18th December 2016.
  5.  Mohajer MF, Aksamija A. Integration of Building Energy Modeling (BEM) and Building Information Modeling (BIM): Workflows and Case Study, w: Building Technology Educator’s Society. 2019; 37.
  6. Architektura. info, 2022. Certyfikat LEED. [dostęp 27.06.2022].
  7. James J. Hirsch&Associates. DOE-2.2. 2004. , [dostęp 29.06.2022];
  8. Office of Energy Efficiency & Renewable Energy. 2014. EnergyPlus, [dostęp 29.06.2022].
  9. Autodesk Green Building Studio. Building Performance Analysis. 2022. [dostęp25.06.2022].
  10. GiedrowiczM, Szot J.Modelowanie energetyczne – praktyczne zastosowanie BIM w procesie podnoszenia cech proekologicznych architektury współczesnej, w: Człowiek – Ekologia –Architektura. 2017: 19 – 28.
  11.  Autodesk, 2022. Potential Energy Savings (PES) Chart. [dostęp 25.06.2022].
  12.  Carvalho JP,AlmeidaM, Bragança L,Mateus R. BIM-Based EnergyAnalysis and Sustainability Assessment –Aplication to Portuguese Buildings. 2021,w:Buildings [dostęp 24.05.2022].
dr inż. Andrzej Szymon Borkowski, Politechnika Warszawska; Wydział Geodezji i Kartografii ORCID: 0000-0002-7013-670X
inż. Natalia Osińska, Politechnika Warszawska; Wydział Geodezji i Kartografii ORCID: 0000-0001-6231-7802
inż. Natalia Szymańska, Politechnika Warszawska; Wydział Geodezji i Kartografii ORCID: 0000-0002-8548-5160

dr inż. Andrzej Szymon Borkowski, Politechnika Warszawska; Wydział Geodezji i Kartografii ORCID: 0000-0002-7013-670X

 andrzej.borkowski@pw.edu.pl

Full paper:

DOI: 10.15199/33.2022.08.07

Article in PDF file