Water pipes failure repair costs


openaccess, Vol. 603 (11) 2022 / wtorek, 29 listopada, 2022

(Open Access)

DOI: 10.15199/33.2022.11.46

Studziński Andrzej. 2022. Water pipes failure repair costs. Volume 603. Issue 11. Pages 162-164. Article in PDF file

Accepted for publication: 28.09.2022 r.

The paper presents an analysis of the costs of repairing water pipes, which is based on operational data. The analysis took into account direct costs, which include the cost of materials, equipment and labor. A multi-stage regression analysis was used, the dependence of failure removal costs on: the diameter of the pipeline, its type, material and the duration of the repair was considered. The research did not show any dependence of costs on the pipe material and its type at the statistical significance 0.05.
  1. Francisque A, Tesfamariam S, Kambir G, Haider H, Reeder A, Sadig R. Water mains renewal planning framework for small to medium sized water utilities: a life cycle cost analysis approach. Urban Water Journal, 2017; https://doi.or g/10.1080/1573062X.2016.1223321.
  2.  Min-Tsai L, Huey Y. Optimal number of minimal repairs with cumulative repair cost limit for a two-unit system with failure rate interactions. International Journal of Systems Science. 2016; https://doi.org/10.1080/00207721.2014.88 6749.
  3. Turan O, Ölçer AI, Lazakis I, Rigo P, Caprace JD. Maintenance/repair and production-oriented life cycle cost/earning model for ship structural optimisation during conceptual design stage. Ships Tabela 2. Analiza wariancji dla zmiennych X1, X2, X3 i X4 Table 2. Analysis of variance for variable X1, X2, X3 and X4 df SS MS F Istotność F Regresja 4 3666212394 916553098 65,60103092 5,60051E-39 Resztkowy 277 3870140525 13971626,4 Razem 281 7536352919 Współczynniki Błąd standardowy t Stat Wartość-p Dolne 95% Górne 95% Przecięcie –167,018 762,0316079 –0,21917441 0,826675602 –1667,126613 1333,090962 X1 14,26257 3,812258645 3,74123858 0,000222578 6,757890011 21,76724825 X2 1244,935 744,4782195 1,67222493 0,095609083 –220,6187628 2710,488838 X3 –15,7023 270,5224631 –0,05804435 0,953755152 –548,2433654 516,8387647 X4 110,5305 10,49736664 10,5293507 5,0036E–22 89,86570579 131,1952039 Tabela 3. Analiza wariancji dla zmiennych X1 i X4 Table 3. Analysis of variance for variables X1 and X4 df SS MS F Istotność F Regresja 2 3614066851 1807033426 128,5379 2,72105E-40 Resztkowy 279 3922286068 14058373 Razem 281 7536352919 Współczynniki Błąd standardowy t Stat Wartość-p Dolne 95% Górne 95% Przecięcie 1133,689614 287,4854226 3,94346817 0,000102 567,7736603 1699,605567 X1 20,20511713 1,963923973 10,2881361 2,95E-21 16,33912665 24,07110761 X4 108,7798332 10,41235253 10,44719077 8,87E-22 88,28308473 129,2765817 and Offshore Structures. 2009; https://doi. org/10.1080/17445300802564220.
  4.  Shahata K, Zayed T. Simulation-based life cycle cost modeling and maintenance plan for water mains. Structure and Infrastructure Engineering. 2013; https://doi.or g/10.1080/15732479.2011.552509.
  5.  Ghobadi F, Jeong G, Kang D. Water Pipe Replacement Scheduling Based on Life Cycle Cost Assessment and Optimization Algorithm. Water. 2021 https://doi. org/ 10.3390/w13050605.
  6. Giustolisi O, Laucelli D, Savic DA. Development of rehabilitation plans for water mains replacement considering risk and cost-benefit assessment. Civil Engineering and Environmental Systems. 2006; https://doi.org/10.1080/ 10286600600789375.
  7.  Venkatesh G. Cost-benefit analysis – leakage reduction by rehabilitating old water pipelines: Case study of Oslo (Norway). Urban Water Journal. 2012; https://doi.org/10.1080/157 3062X.2012.660960.
  8.  Sáez-Fernández FJ, González-Gómez F, Andrés J, Picazo-Tadeo AJ. Opportunity Costs of Ensuring Sustainability in Urban Water Services. International Journal of Water Resources Development. 2011; https://doi.org/10.1080/07900627 .2010.548316.
  9.  Kessler A, Ormsbee L, Shamir UA. Methodology for least-cost design of invulnerable water distribution networks. Civil Engineering Systems. 1990; https://doi. org/10.1080/02630259008970566.
  10.  Osman H, Ammar M, El-Said M. Optimal scheduling of water network repair crews considering multiple objectives. Journal of Civil Engineering and Management. 2017; https://doi.org/ 10.3846/13923730.2014.948911.
  11. Hotloś H. Ilościowa ocena wpływu wybranych czynników na parametry i koszty eksploatacyjne sieci wodociągowych. Politechnika Wrocławska, Prace Naukowe Instytutu Inżynierii Ochrony Środowiska, Seria Monografie, nr 49, Oficyna Wydawn. Politechniki Wrocławskiej, Wrocław 2007.
  12.  Hotloś H. Analiza kosztów naprawy uszkodzeń przewodów wodociągowych we Wrocławiu. Ochrona Środowiska. 2005; 27:37–43.
  13.  Hotloś H. Metodyka i przykłady prognozowania kosztów naprawy przewodów wodociągowych. Ochrona Środowiska. 2006, 28:49–54.
  14. Studziński A, Pietrucha-Urbanik K. Analiza kosztów robocizny do usuwania awarii sieci wodociągowych. Technologia Wody, 2017, 1(51):24-28.
  15.  Studziński A. Analysis of Cost of Building Equipment Used for Removal of Water Conduits Failure. Springer. 2020 https://doi. org/10.1007/978-3-030-27011-7_58.
  16.  Pietrucha-Urbanik K, Studziński A. Analiza kosztów materiałów użytych do usuwania awarii przewodów wodociągowych. Rocznik Ochrona Środowiska. 2018, 20:1453-1464.
  17.  https://www1.nyc.gov/site/dep/pay-my-bills/ service-line-protection-program.page. 21.09.2022.
dr inż. Andrzej Studziński, Politechnika Rzeszowska, Wydział Budownictwa, Inżynierii Środowiska i Architektury ORCID: 0000-0002-6551-9490

dr inż. Andrzej Studziński, Politechnika Rzeszowska, Wydział Budownictwa, Inżynierii Środowiska i Architektury ORCID: 0000-0002-6551-9490

 astud@prz.edu.pl

Full paper:

DOI: 10.15199/33.2022.11.46

Article in PDF file