Using the energy absorption capacity to determine the residual strength of fibrocomposites

openaccess, Vol. 607 (3) 2023 / poniedziałek, 20 marca, 2023

(Open Access)

DOI: 10.15199/33.2023.03.01

Głodkowska Wiesława, Laskowska-Bury Joanna, Lehmann Marek. 2023. Using the energy absorption capacity to determine the residual strength of fibrocomposites. Volume 607. Issue 3. Pages 1-4. Article in PDF file

Accepted for publication: 17.02.2023 r.

The article discusses the method of determining residual strength using the energy absorption capacity of fibrecomposite. The research was carried out by bending squarecross- section plates simply supported at the perimeter. The residual strengths determined in this way are characterized by a much lower coefficient of variation than those determined using the normative method according to PN-EN 14651:2007. The described test is an alternative to 3-point bending of beams and allows to determine this feature with greater reliability.
  1. Tiberti G, Germano F, Mudadu A, Plizzari GA. An overview of the flexural post–cracking behavior of steel fiber reinforced concrete. Struct Concr. 2017; 19: 695 – 718.
  2. Buratti N, Ferracuti B, Savoia M. Concrete crack reduction in tunnel linings by steel fibre–reinforced concretes. Constr Build Mater. 2013; 44: 249 – 259.
  3. Głodkowska W. Waste Sand Fiber Composite: Models of Description of Properties and Application. Annu. Set The Environ Prot. 2018; 20: 291.
  4. Giaccio G, Tobes JM, Zerbino R. Use of small beams to obtain design parameters of fibre reinforced concrete. CemConcr Comp. 2008; 30: 297 – 306.
  5.  Model Code 2010. In Final draft, fib Bulletin 66, v. 2, 2012. Comite Euro-International du Beton – Federation International e de la Precontrainte: Paris; 2010.
  6. PN-EN 14651:2005 + A1:2007. Test Method for Metallic Fibered Concrete – Measuring the Flexural Tensile Strength (Limit or Proportionality (LOP), Residual).
  7. RILEM TC 162-TDF. Test and design methods for steel fibre reinforced concrete, σ-ε design method. Mater Struct. 2003; 36: 560 – 567.
  8. Yoo DY, Lee JH, Yoon YS. Effect of fiber content on mechanical and fracture properties of ultrahigh performance fiber reinforced cementitious composites. Com Struct 2013; 106: 742 – 753.
  9. Lee JH. Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete. Compos Struct. 2017; 168: 216 – 225.
  10. Zamanzadeh Z, Laurenco L, Barros J. Recycled steel fiber reinforced concrete failing in bending and in shear. Constr Build Mater. 2015; 85: 195 – 207.
  11. ChoiWCh, Jung KY, Jang SJ, Yun HD. The Influence of Steel Fiber Tensile Strengths and Aspect Ratios on the Fracture Properties of High-Strength Concrete. Materials. 2019; 12: 2105.
  12. Centonze G, Leone M, Aiello MA. Steel fibers from waste tires as reinforcement in concrete: a mechanical characterization. Constr Build Mater. 2012; 36: 46 – 57.
  13. Buratti N, Mazzotti C, Savoia M. Postcracking behaviour of steel and macro synthetic fiber-reinforced concretes. Constr Build Mater. 2011; 25: 2713 – 2722.
  14. Głodkowska W, Ziarkiewicz M, Lehmann M. Residual strength of fibre composite based on waste sand. Materiały Budowlane. 2015; 5: 75 – 77.
  15. PN-EN 14488-5: 2008. Testing sprayed concrete – Part 5: Determination of energy absorption capacity of fibre reinforced slab specimens.
  16. Lehmann M, Głodkowska W. Shear Capacity and Behaviour of Bending Reinforced Concrete Beams Made of Steel Fibre- Reinforced Waste Sand Concrete. Materials. 2021; 14: 2996.
  17. Laskowska-Bury J. Wybrane cechy fizyko- -mechaniczne fibrokompozytu wytworzonego na bazie kruszywa odpadowego. Rozprawa doktorska. Koszalin; 2017.
  18. Khaloo AR, Afshari M. Flexural behaviour of small steel fibre reinforced concrete slabs. Cem Concr Comp. 2005; 27: 141 – 149.
prof. dr hab. inż. Wiesława Głodkowska, Politechnika Koszalińska, Wydział Inżynierii Lądowej, Geodezji i Środowiska ORCID: 0000-0003-3719-5350
dr inż. Joanna Laskowska-Bury, Politechnika Koszalińska, Wydział Inżynierii Lądowej, Geodezji i Środowiska ORCID: 0000-0002-0618-1370
dr inż. Marek Lehmann, Politechnika Koszalińska, Wydział Inżynierii Lądowej, Geodezji i Środowiska ORCID: 0000-0002-1314-3014

dr inż. Joanna Laskowska-Bury, Politechnika Koszalińska, Wydział Inżynierii Lądowej, Geodezji i Środowiska ORCID: 0000-0002-0618-1370

Full paper:

DOI: 10.15199/33.2023.03.01

Article in PDF file