Thermal insulation products – the propensity to undergo continuous smouldering

openaccess, Vol. 604 (12) 2022 / wtorek, 27 grudnia, 2022

(Open Access)

DOI: 10.15199/33.2022.12.01

Kaczorek-Chrobak Katarzyna, Kolbrecki Andrzej, Kuźnia Monika. 2022. Thermal insulation products – the propensity to undergo continuous smouldering. Volume 604. Issue 12. Pages 1-5. Article in PDF file

Accepted for publication: 8.11.2022

Continuous smouldering process of thermal insulation materials is a significant issue of fire safety of buildings. Fourteen different materials were tested. The minimum temperature of 250°C at the fourth thermocouple (400 mm above the ignition source) was adopted as a criterion of smouldering. Based on the test results, it was concluded that glass wool and cement-bonded particle boards showed a tendency to self-heat, and the loose paper fibres and fibreboards are prone to self-heating and continuous smouldering.
  1. Purser DA. Performance of Fire Retardants in Relation to Toxicity, Toxic Hazard and Risk in Fires. Chapter 12 in Fire Retardant Materials, Edited by A.R. Horrock and D. Price, CRC Press/ Woodhead Publishing, Cambridge, UK. 2001: 449-499.
  2. Kaczorek-Chrobak K. Electric cables used in buildings – dependency of fire properties on constructional and material parameters. Doctor of Philosophy Thesis, Instytut Techniki Budowlanej, Warsaw, Poland, 2020.
  3.  Rein G. Smoldering Combustion, Chapter 19 in: SFPE Handbook of Fire Protection Engineering, 5th Edition, Springer, 2016: 581-603; 1-4939-2565-0_19.
  4.  Fangrat J. Is Flameless Combustion of Importance to Fire Safety? Archivum Combustionis, 2004; 24(1-2): 79-92.
  5.  Rein G. Smouldering Combustion Phenomena in Science and Technology, International Review of Chemical Engineering (I.RE.CH.E.). January 2009; 1(1).
  6. Ohlemiller TJ. „Smoldering Combustion” SFPE Handbook of Fire Protection Engineering 2nd Edition Chapter 11 section 2 pages 171-179.
  7.  Gray B. Spontaneous Combustion and Self-Heating. SFPE Handbook of Fire Protection Engineering, Massachusetts. 2002; 3: 211-228.
  8.  Kolbrecki A, Kaczorek-Chrobak K, Gwiżdż T. Badania i ocena izolacji celulozowych i drewnopochodnych w zakresie przechodzenia w proces ciągłego tlenia. Materiały Budowlane, 2018; 7: 14-16. DOI: 10.15199/33.2018.07.04 (in Polish).
  9.  EN 13501-1:2019 Fire classification of construction products and building elements – Part 1: Classification using data from reaction to fire tests, CEN, Brussels, Belgium.
  10.  Stec AA, Hull TR. Assessment of the fire toxicity of building insulation materials, Energy and Buildings. 2011; 43(2-3): 498-506, DOI:10.1016/j.enbuild.2010.10.015.
  11. Leppanen P, Malaska M. Experimental Study on the Smouldering Combustion of Mineral Wool Insulation in Chimney Penetrations. Fire Technology. 2019; 55: 2171-2194; https://doi. org/10.1007/s10694-019-00849-1.
  12.  Küppers J, Zehfuß J, Steeger F, Kampmeier B. Fire safety of ETICS with wood fibreboards for multi-storey buildings – first research and development results. MATEC Web of Conferences 46, 05007 (2016), DOI:10.1051/matecconf/ 20164605007.
  13. Guindos P, Auad G, Kolb T. Theoretical Model for further Development of Intumescent Substances to Remediate Smoldering in Wood Fiber Iinsulation Panels, Maderas. Ciencia y tecnología, 2021 (23): 51, 1-22, DOI:10.4067/ s0718-221x2021000100451.
  14. Steen-Hansen A, Mikalsen RF, Jensen UE. Smouldering Combustion in Loose-Fill Wood Fibre Thermal Insulation: An Experimental Study. Fire Technology. 2018; 54: 1585-1608.
  15.  Kurama H. Fire Retardant Efficiency of Waste Magnesia Powder in Cellulose Insulation. Journal of the Australian Ceramic Society. 2016; 52(2): 14-149.
  16. Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z 7 czerwca 2010 r. w sprawie ochrony przeciwpożarowej budynków, innych obiektów budowlanych i terenów (Dz.U. nr 109, poz. 719) (in Polish).
  17.  EN 16733:2016 Reaction to fire tests for building products – Determination of a building product’s propensity to undergo continuous smouldering.
PhD Eng. Katarzyna Kaczorek-Chrobak, Building Research Institute, Fire Research Department ORCID: 0000-0002-0406-6598
PhD Eng. Andrzej Kolbrecki
PhD Eng. Monika Kuźnia, AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science

PhD Eng. Katarzyna Kaczorek-Chrobak, Building Research Institute, Fire Research Department ORCID: 0000-0002-0406-6598

Full paper:

DOI: 10.15199/33.2022.12.01

Article in PDF file