The influence of high temperatures on selected strength properties of fine-aggregate fiber composite


openaccess, Vol. 617 (1) 2024 / czwartek, 25 stycznia, 2024

(Open Access)

DOI: 10.15199/33.2024.01.01

Głodkowska Wiesława, Lehmann Marek, Laskowska-Bury Joanna. 2024. The influence of high temperatures on selected strength properties of fine-aggregate fiber composite. Volume 617. Issue 1. Pages 1-6. Article in PDF file

Accepted for publication: 03.01.2024 r.

The paper presents an analysis of the influence of high temperature on selected mechanical properties of finely aggregated mineral composite with dispersed steel reinforcement. The designed fibrecomposite has properties similar to or better than ordinary concrete and can be successfully used to make load-bearing reinforced concrete elements. The change in compressive strength and residual tensile strength during bending of the fibrecomposite was determined at room temperatures and determined according to the fire curve imitating the temperature build-up during a real fire. The research program also included the assessment of the weight loss of fibrecomposite samples annealed in the furnace. Studies have shown that the addition of steel fibers to the composite mix in the amount of 1.2%contributes to the preservation of its mechanical properties when exposed to temperatures up to 550°C due to fire, and thus is able to improve its structural stability at high temperature. Steel fibers significantly improve the fire-retardant properties of the fine-aggregate composite.
  1. Drzymała T. Wpływ temperatur występujących w czasie pożaru na podstawowe parametry wytrzymałościowe wibrobetonu. Zeszyty Naukowe SGSP. 2006.
  2. Kim MO, Bordelon AC, Lee NK. Early-age crack widths of thin fiber reinforced concrete overlays subjected to temperature gradients. Construction and Building Materials. 2017; https://doi.org/10.1016/j.conbuildmat. 2017.05.099.
  3. Jameran A, Ibrahim IS, Yazan SHS, Rahim SNAA. Mechanical properties of steel-polypropylene fibre reinforced concrete under elevated temperature. Procedia Engineering. 2015; https://doi.org/10.1016/j.proeng.2015.11.146.
  4.  Sukontasukkul P, Pomchiengpin W, Songpiriyakij S. Post-crack (or post-peak) flexural response and toughness of fiber reinforced concrete after exposure to high temperature. Construction and Building Materials. 2010; https://doi. org/10.1016/j.conbuildmat.2010.04.003.
  5.  Erdakov P, Khokhryachkin D. Impact of fire on the stability of tunnels. Master’s Thesis. Lulea University of Technology; 2005.
  6.  DeshpandeAA, Kumar D, Ranade R. Influence of high temperatures on the residual mechanical properties of a hybrid fiber-reinforced strain- -hardening cementitious composite. Construction and Building Materials. 2019; https://doi. org/10.1016/j.conbuildmat.2019.02.129.
  7.  DeshpandeAA, Kumar D, Ranade R. Temperature effects on the bond behavior between deformed steel reinforcing bars and hybrid fiber-reinforced strain-hardening cementitiouscomposite. Construction and Building Materials. 2020; https://doi.org/10.1016/j.conbuildmat. 2019.117337.
  8. Alberti MG, Galvez JC, Enfedaque A, Castellanos R. Influence of High Temperature on the Fracture Properties of Polyolefin Fibre Reinforced Concrete. Materials. 2021; https://doi. org/10.3390/ma14030601.
  9.  Müller P, Novák J, Holan J. Destructive and non-destructive experimental investigation of polypropylene fibre reinforced concrete subjected to high temperature. Journal of Building Engineering. 2019; https://doi.org/10.1016/j.jobe.2019.100906.
  10.  Bezerra ACS, Maciel PS, Correa ECS, Paulo R. R. Soares Junior PRR, AguilarMTP. Effect of High Temperature on the Mechanical Properties of Steel Fiber-Reinforced Concrete, Fibers. 2019; https://doi.org/10.3390/fib7120100.
  11. Choumanidis D, Badogiannis E, Nomikos P, Sofianos A. Barcelona test for the evaluation of the mechanical properties of single and hybrid FRC, exposed to elevated temperature. Construction and Building Materials. 2017; https://doi. org/10.1016/j.conbuildmat.2017.01.115.
  12. Choumanidis D, Badogiannis E, Nomikos P, Sofianos A. The effect of different fibres on the flexural behaviour of concrete exposed to normal and elevated temperatures. Construction and Building Materials. 2016; https://doi.org/10.1016/j. conbuildmat.2016.10.089.
  13.  Ruano G, Isla F, Luccioni B, Zerbino R, Giaccio G. Steel fibers pull-out after exposure to high temperatures and its contribution to the residual mechanical behavior of high strength concrete. Construction and Building Materials. 2018; https://doi.org/10.1016/j.conbuildmat. 2017.12.129.
  14. AkcaAH, Özyurt N. Deterioration and recovery of FRC after high temperature exposure. Cement and Concrete Composites. 2018; https://doi. org/10.1016/j.cemconcomp.2018.07.020.
  15.  Głodkowska W, Ziarkiewicz M. Cracking behavior of steel fiber reinforced waste sand concrete beams in flexure – Experimental investigation and theoretical analysis. Engineering Structures. 2018; https://doi.org/10.1016/j.engstruct. 2018.08.097.
  16.  Głodkowska W. Waste Sand Fiber Composite: Models of Description of Properties and Application. Annu. Set The Environ Prot; 2018.
  17.  Lehmann M, Głodkowska W. Shear Capacity and Behaviour of Bending Reinforced Concrete Beams Made of Steel Fibre-Reinforced Waste Sand Concrete. Materials. 2021; https://doi. org/10.3390/ma14112996.
  18.  Bednarek Z, Drzymała T. Wpływ temperatur występujących podczas pożaru na wytrzymałość na ściskanie fibrobetonu. Zeszyty Naukowe SGSP. 2008; 36: 62 – 84.
  19.  RILEM Technical Committtees 129-MHT. Testmethods formechanical properties of concrete at high temperatures, Part 1: Introduction, Part 2: Stress-strain relation, Part 3: Compressive strength for service and accident conditions. Mater. Struct. 1995; 28.
  20.  PN-EN 12390-3:2019-7 Badania betonu – Część3:Wytrzymałośćna ściskaniepróbekdobadań.
  21.  PN-EN 14651+A1:2007Metoda badania betonu zbrojonego włóknem stalowym – Pomiary wytrzymałości na rozciąganie przy zginaniu (granica proporcjonalności LOP).
  22.  Xiao J, Xie Q, XieW. Study on high-performance concrete at high temperatures in China (2004–2016) – An updated overview. Fire Safety Journal. 2018; https://doi.org/10.1016/j.firesaf. 2017.10.007.
  23.  Castillo C. Effect of transient high temperature on high-strength concrete. Doctoral dissertation. RiceUniversity. 1987.
  24.  Moghadam MA, Izadifard RA. Effects of zeolite and silica fume substitution on the microstructure and mechanical properties of mortar at high temperatures. Construction and Building Materials. 2020; https://doi.org/10.1016/j.conbuildmat. 2020.119206.
  25.  Moghadam MA, Izadifard RA. Effects of steel and glass fibers on mechanical and durability properties of concrete exposed to high temperatures. Fire Safety Journal. 2020; https://doi. org/10.1016/j. firesaf. 2020.102978.
  26.  Ajdukiewicz A. Prenorma konstrukcji betonowych – fib Model Code 2010. Polski Cement, Kraków 2014.
  27. Xiao J, Falkner H. On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures. Fire Saf. J. 2006; https://doi.org/10.1016/j.firesaf. 2005.11.004.
  28.  Sahmaran M, Lachemi M, Li VC. Evaluation of mechanical properties and microstructure of fire-damaged cement composites, ACI Mater. J. 2010; 107 (3): 297 – 304.
prof. dr hab. inż. Wiesława Głodkowska, Politechnika Koszalińska, Wydział Inżynierii Lądowej, Środowiska i Geodezji ORCID: 0000-0003-3719-5350
dr inż. Marek Lehmann, Politechnika Koszalińska, Wydział Inżynierii Lądowej, Środowiska i Geodezji ORCID: 0000-0002-1314-3014
dr inż. Joanna Laskowska-Bury, Politechnika Koszalińska, Wydział Inżynierii Lądowej, Środowiska i Geodezji ORCID: 0000-0002-0618-1370

dr inż. Marek Lehmann, Politechnika Koszalińska, Wydział Inżynierii Lądowej, Środowiska i Geodezji ORCID: 0000-0002-1314-3014

marek.lehmann@tu.koszalin.pl

Full paper:

DOI: 10.15199/33.2024.01.01

Article in PDF file