The impact of inadequate exploration of the subsoil on the implementation of investments in a closed area


openaccess, Vol. 606 (2) 2023 / środa, 22 lutego, 2023

(Open Access)

DOI: 10.15199/33.2023.02.10

Chmielewski Ryszard, Sankowski Jacek, Sobczyk Kamil. 2023. The impact of inadequate exploration of the subsoil on the implementation of investments in a closed area. Volume 606. Issue 2. Pages 39-43. Article in PDF file

Accepted for publication: 16.01.2023 r.

The article presents the problems that arise at the initial stage of construction of a building, resulting from inadequate identification of the subsoil. Investments in closed areas often involve critical infrastructure facilities or special facilities that require individual, special design solutions. The development of appropriate design solutions for their foundation requires proper reconnaissance of the subsoil, adequate to the geotechnical category of the building object.
  1. Nikolai B. Underground space as an urban indicator: measuring use of subsurface. Tunnelling and Underground Space Technology. 2016; https://doi.org/10.1016/j.tust. 2015.10.024.
  2. Broere W. Urban underground space: solving the problems of today’s cities. Tunnelling and Underground Space Technology. 2016; https://doi. org/10.1016/j.tust. 2015.11.012.
  3. Niedostatkiewicz M. Building modernization located in the conservation protection zone in the aspect of technical conditions. Safety Engineering of Anthropogenic Objects. 2022; https://doi. org/10.37105/iboa.133.
  4. Chmielewski R, Kruszka L. Ekspertyzy i opinie techniczne z zakresu budownictwa. WAT, 2005 – 2022.
  5. Son M, Cording EJ. Responses of buildings with different structural types to excavation-induced ground settlements. Journal of Geotechnical and Geoenvironmental Engineering. 2011; https://doi. org/10.1061/(ASCE) GT. 1943-5606.0000448.
  6.  Bian Y-H, Huang HW. Risk assessment of building damage induced by deep excavation. Chinese J. Geotech. Eng. 2006; 28: 1892 – 1896.
  7. Yildizlar B, Akcay C, Çoşgun T. Damages inadjacent structures due to foundation excavation.Conference:FourthInternationalConferenceonAdvancesinCivil, Structural and Environmental Engineering – ACSEE 2016; https://doi. org/10.15224/978-1-63248-114-6-28.
  8.  Finno RJ, Voss FT, Rossow E. Evaluating Damage Potential in Buildings Affected by Excavations. Journal of Geotechnical and Geoenvironmental Engineering. 2005;https://doi.org/10.1061/(ASCE)1090-0241 (2005)131: 10 (1199).
  9. Yu S, Geng Y. Influence Analysis of Underground Excavation on the Adjacent Buildings and Surrounding Soil Based on Scale Model Test. Advances in Civil Engineering. 2019. https://doi. org/10.1155/2019/6527175.
  10. Sivasuriyan A, Vijayan DS, Górski W, Wodzyński Ł, Vaverková MD, Koda E. Practical Implementation of Structural Health Monitoring in Multi-Story Buildings. Buildings. 2021; https://doi.org/10.3390/buildings11060263.
  11. Ou Ch-Y, Teng F, Li Ch-W. Asimplified estimation of excavation-induced ground movements for adjacent building damage potential assessment. Tunnelling and Underground Space Technology. 2020; https://doi. org/10.1016/j. tust. 2020.103561.
  12. Wang W-D,Xu Z-H. Simplified analysismethod for evaluating excavation-induced damage of adjacent buildings.Chinese J. Geotech. Eng. 2010; 32: 32 – 38.
  13.  Heidarzadeh S, Saeidi A, Rouleau A. The damage-failure criteria for numerical stability analysis of underground excavations: A review. Tunnelling and Underground Space Technology. 2021; https://doi.org/10.1016/j.tust.2020.103633.
  14.  Öser C, Sayin B. Geotechnical assessment and rehabilitation of retaining structures collapsed partially due to environmental effects. Engineering Failure Analysis. 2021; https://doi. org/10.1016/j.engfailanal. 2020.104998.
  15.  Aye ZZ, Karki D, Schulz Ch. Ground Movement Prediction and Building Damage Risk Assessment for the Deep Excavations and Tunneling Works in Bangkok Subsoil. International Symposiumon Underground Excavation and Tunnelling. 2006.
  16. Huynh TQ, Lai VQ, Boonyatee T, Keawsawasvong S. Behavior of a Deep Excavation and Damages on Adjacent Buildings: a Case Study in Vietnam. Transportation Infrastructure Geotechnology. 2020; https://doi. org/10.1007/s40515-020-00142-7.
  17. Wysokiński L, Kotlicki W. Instrukcja ITB nr 376. Ochrona zabudowy w sąsiedztwie głębokich wykopów. Wytyczne. Instytut Techniki Budowlanej. ISBN 978-83-249-8562-3.
  18.  Godlewski T, Niemyjska M. Ryzyko geotechniczne w projektowaniu i realizacji głębokich wykopów. ACTA SCIENTIARUMPOLONORUM–Architectura Budownictwo. https://doi. org/10.22630/ASPA. 2018.17.3.26.
  19.  Kacprzak G, Daktera T, Stańczyk A, Tomczak U, Bodus S, Werle M. An application of reinforced concrete vaulted slabs and rafts in deep excavation works. Archives of Civil Engineering. LXVII. https://doi. org/10.24425/ace. 2021.138043.
  20.  Dokumentacja geologiczno-inżynierska inwestycji. 2017 r.
  21. PN-EN 1997-2, Eurokod 1, Projektowanie geotechniczne. Część 2: Rozpoznanie i badanie podłoża gruntowego.
  22.  Rozporządzenie ministra transportu, budownictwa i gospodarki morskiej z 25 kwietnia 2012 r. w sprawie ustalania geotechnicznych warunków posadawiania obiektów budowlanych (Dz. U. 2012 poz. 463).
  23.  Opinia techniczna weryfikująca warunki gruntowe i ich stan na terenie budowy. 2020.
dr hab. inż. Ryszard Chmielewski, Wojskowa Akademia Techniczna, Wydział Inżynierii Lądowej i Geodezji ORCID: 0000-0001-5662-9180
mgr inż. Jacek Sankowski, Ministerstwo Obrony Narodowej, Departament Infrastruktury ORCID: 0000-0002-5712-267X
mgr inż. Kamil Sobczyk, Wojskowa Akademia Techniczna, Wydział Inżynierii Lądowej i Geodezji ORCID: 0000-0002-5929-757X

dr hab. inż. Ryszard Chmielewski, Wojskowa Akademia Techniczna, Wydział Inżynierii Lądowej i Geodezji ORCID: 0000-0001-5662-9180

 ryszard.chmielewski@wat.edu.pl

Full paper:

DOI: 10.15199/33.2023.02.10

Article in PDF file