Testing the effectiveness of foils reflective films in building partitions building envelopes in relation to depending on heat transfer conditions


openaccess, Vol. 608 (4) 2023 / poniedziałek, 24 kwietnia, 2023

(Open Access)

DOI: 10.15199/33.2023.04.07

Wilk-Słomka Beata, Belok Janusz, Orlik-Kożdoń Bożena, Steidl Tomasz. 2023. Testing the effectiveness of foils reflective films in building partitions building envelopes in relation to depending on heat transfer conditions. Volume 608. Issue 4. Pages 30-35 Article in PDF file

Accepted for publication: 09.02.2023 r.

The authors simply refer to the results of research on the evaluation of reflective technologies in walls and roof systems, in terms of improving the thermal insulation of these elements. For selected vertical partition solutions (with foil, without foil) using the heat boxmethod, heat transfer coefficients for surfaces with reflective coatings were determined based on temperature measurements and heat flux density. The purpose of the study was to determine the effectiveness of reflective foils under specific heat transfer conditions taking into account the nature of the dominant heat source in the room.
  1. Martin J, Tenpierik Evert Hasselaar. Reflective multi-foil insulations for buildings: A review. Energy and Buildings. 2013; 56: 233 – 243.
  2. Schaub M, Kriegel M, Brandt S. Experimental investigation of heat transfer by unsteady natural convection at a vertical flat plate; International Journal of Heat and Mass Transfer. 2019; 136: 1186 – 1198.
  3.  Sau Wai Lee, Chin Haw Lim, Elias Ilias Bin Salleh. Reflective thermal insulation systems in building: A review on radiant barrier and reflective insulation; Renewable and Sustainable Energy Reviews. 2016; 65: 643 – 661.
  4. Orlik-Kożdoń B, Belok J. Experimental and numerical study on the effective thermal conductivity of channel thermal insulation plate; -Int. J. Heat Mass Transf. 2017; 106: 1097 – 1106. bibliogr. 48 poz.
  5.  Vereecken E, Janssen H. A determination methodology for the spatial profile of the convective heat transfer coefficient on building components; Indoor and Built Environment. 2018; 27 issue: 4: 512 – 527.
  6. Panigrahi PK, Nigam NC. Emissivity measurement. Heat and Mass Transfer.
  7. Al-Hazmy M: Analysis of coupled natural convection-conduction effects on the heat transport through hollow building blocks; Energy and Buildings. 2006; Volume 38. Issue 5: 515 – 521.
  8.  Joudi A. Harald Svedung. Mathias Cehlin. Mats Ronnelid: Reflective coatings for interior and exterior of buildings and improving thermal performance. Applied Energy. 2013; Volume 103: 562 – 570.
  9.  EN 16012:2012+A1:2015 Izolacja cieplna budynkow.Wyroby do izolacji refleksyjnej. Określanie deklarowanych cieplnych właściwości użytkowych.
  10. Belusko M, Bruno F, Saman W. Investigation of the thermal resistance of timber attic spaces with reflective foil and bulk insulation. heat flow up Applied Energy. 2022; 88. Issue 1: 127 – 137.
  11.  Hernandez-Perez I, Alvarez G, Xaman J, Zavala-Guillen I,Arce J, Sima E. Thermal performance of reflective materials applied to exterior building components-A review. Energy and Buildings. 2014; 80: 81 – 105.
  12.  Experiment 2. India; http://home.iitk.ac.in/~panig/ME341_EXP2.pdf.
  13.  Fathaliana A, Kargarsharifabadab H. Actual validation of energy simulation and investigation of energy management strategies (Case Study: An office building in Semnan. Iran). Case Studies in Thermal Engineering. 2018; volume 12: 510 – 516.
  14. Fisher DE. An Experimental Investigation of Mixed Convection Heat Transfer in a Rectangular Enclosure. PhD Thesis. University of Illinois. 1995. Urbana USA.
  15. Hamed H. Saber: Investigation of thermal performance of re?ective insulations for different applications; Building and Environment. 2012; 52: 32 – 44.
  16. Shi-Jie C, Hua-Yan D. Investigation of temperature regulation effects on indoor thermal comfort. air quality. and energy savings toward green residential buildings. Science and Technology for the Built Environment. 2019; 25(3): 309 – 321.
  17. Chen HY, Chen C. Determining the emissivity and temperature of building materials by infrared thermometer. Construction and Building Materials. 2016; Volume 126: 130 – 137.
  18.  Clark JD. Modeling of transport processes for the reduction of energy use in commercial buildings. 2013. repositories.lib.utexas.edu.
  19. Honner M, Litoš P, Švantner M. Thermography analyses of the holedrilling residual stressmeasuring technique; Infrared Physics&Technology. 2004; Volume 45. Issue 2: 131 – 142.
  20.  ISO 6781 Thermal insulation – Qualitative detection of thermal irregularities in building envelopes – Infrared method.
  21.  Theodore L Bergman. Adrienne S. Lavine. Frank P. Incropera. David P. DeWitt: Incropera’s Principles of Heat and Mass Transfer. 1st Edition. Global Edition. 2017.
  22.  EN-ISO 8990:2007. Thermal insulation – Determination of steady-state thermal transmission properties – Calibrated and guarded hot box.
  23. Asadi S, HassanMM. Evaluation of the thermal performance of a roofmounted radiant barrier in residential buildings: Experimental study. 2017. Energy and Buildings. 150. pp. 546-557.
  24. Beausoleil-Morrison I. The adaptive simulation of convective heat transfer at internal building surfaces; Building and Environment. 2002; volume 37. Issues 8-9: 791 – 806.
dr inż. Beata Wilk-Słomka, Politechnika Śląska, Wydział Budownictwa ORCID: 0000-0001-9527-3279
dr inż. Janusz Belok, Politechnika Śląska, Wydział Budownictwa ORCID: 0000-0002-8828-5076
dr inż. Bożena Orlik-Kożdoń, Politechnika Śląska, Wydział Budownictwa ORCID: 0000-0002-4905-3037
dr inż. Tomasz Steidl, Politechnika Śląska, Wydział Budownictwa ORCID: 0000-0002-9277-1392

dr inż. Tomasz Steidl, Politechnika Śląska, Wydział Budownictwa ORCID: 0000-0002-9277-1392

tomasz.steidl@pols.pl

Full paper:

DOI: 10.15199/33.2023.04.07

Article in PDF file