Structure and properties of hybrid materials gypsum – polymer – water


openaccess, Vol. 590 (10) 2021 / wtorek, 26 października, 2021

(Open Access)

Mucha Maria, Mucha Jarosław. 2021. Structure and properties of hybrid materials gypsum – polymer – water. Volume 590. Issue 10. Pages 35-37. DOI: 10.15199/33.2021.10.05

Accepted for publication: 02.08.2021 r.

The study presented in this article is focused on the influence of water soluble polymers on gypsum properties. Gypsum setting involves: gypsumhydration – crystallization and formation of polymer film in material pores. The processes are studied by various methods such as setting and mechanical measurements, scanning electron microscopy, differential scanning calorimetry and others. Polymer additives act first of all as a retarder of setting and change mechanical properties of material due to modification of its morphological structure. The mechanism of gypsum crystal grow during hydration of chemihy drate calcium sulfate was predicted to be nucleation control process (Avrami equation was applied).
  1. Brumaud C. et al. 2013. „Cellulose ethers and water retention”. Cement and Concrete Research 53: 176 – 184.
  2. Bülichen D., J. Plank. 2013. „Water retention capacity and working mechanism of methyl hydroxypropyl cellulose (MHPC) in gypsumplaster – Which impact has sulfate?”. Cement and Concrete Research 46: 66 – 72.
  3. Czaderna A., A. Kocemba, M. Kozanecki, M.Mucha, P.Mróz. 2018. „The influence of cellulose derivatives onwater structure in gypsum”.Construction and Building Materials 160: 628 – 638.
  4.  Heim D., A. Mrowiec, K. Prałat, Maria Mucha. 2018. „Influence of TyloseMH1000 content on gypsumthermal conductivity”. Journal ofMaterials in Civil Engineering, tom 30/3.
  5.  KocembaA., Maria Mucha. 2016. „Water retention and setting in gypsum/polymers composites”. Przemysł Chemiczny, tom 5, nr 95: 1003.
  6. Kontogeorgos D. A., M. A. Founti. 2012. „Gypsumboard reaction kinetics at elevated temperatures”. Tchermochimica Acta 529: 6 – 13.
  7. Mróz P., M. Mucha. 2017. „Hydration kinetics of calciumsulphate hemihydratemodified by water-soluble polymers”. International Journal of Engineering Research & Science, nr 3: 5 – 13.
  8.  Mróz P.,M.Mucha. 2018. „Hydroxyethylmethyl cellulose as a modifier of gypsum properties”. Journal of Thermal Analysis and Calorimetry, nr 10: 1007.
  9. Mróz P., M. Mucha. 2016. „Rola polimerów w kompozytach z gipsem”. Materiały Kompozytowe, tom 1.
  10.  Mucha M., P. Mróz, D. Wrona. 2016. „Chitosan applied for gypsummodification”. Progress in Chemistry and Application of Chitin and its Derivatives, nr 23/2017.
  11.  Mucha M., P. Mróz, D. Wrona, P. Konca, J.Marszałek. 2020. „Microstructure formation of gypsumby setting in the presence of hydroxypropyl methylocellulose (HPMC)”. Journal of Thermal Analysis and Calorymetry.
  12. Plank J., J. Kainz i D. Bülichen. 2012. „Working mechanism of methyl hydroxyethyl cellulose (MHEC) as water retention agent”. Cement and Concrete Research 42: 953 – 959.
  13.  Pourchez J. et al. 2006. „HPMC and HEMC influence on cement hydration measured by conductometry”. CementandConcreteResearch36:288–294.
  14.  Singh N. B., B.Middendorf. 2007. „Calcium sulphate hydration leading to gypsum crystallization”. Progress in Crystal Growth and Characterization of Materials 53: 57 – 77.
prof. dr hab. Maria Mucha, Politechnika Łódzka; Wydział Inżynierii Procesowej i Ochrony Środowiska; Katedra Inżynierii Molekularnej ORCID: 0000-0001-8840-4007
dr inż. Jarosław Mucha, Politechnika Łódzka; Wydział Budownictwa, Architektury i Inżynierii Środowiska; Instytut Inżynierii Środowiska i Instalacji Budowlanych ORCID: 0000-0002-6573-0632

prof. dr hab. Maria Mucha, Politechnika Łódzka; Wydział Inżynierii Procesowej i Ochrony Środowiska; Katedra Inżynierii Molekularnej ORCID: 0000-0001-8840-4007

maria.mucha@p.lodz.pl