Shear strength of lightweight concrete slabs reinforced with GFRP bars


Vol. 573 (5) 2020 / czwartek, 28 maja, 2020

(InPolish)

Wiater Agnieszka, Siwowski Tomasz. 2020. Shear strength of lightweight concrete slabs reinforced with GFRP bars. Materiały Budowlane. Volume 573. Issue 5. Pages 34-37.

DOI: 10.15199/33.2020.05.06

Accepted for publication: 12.09.2016

This paper evaluates the shear behaviour of simply supported normal-weight and lightweight concrete slabs reinforced with glass fibre reinforced polymer (GFRP) rebars and subjected to four-point static loading.Atotal of seven concrete slabs of 2.8m long, 1.0mwide and 0.18mdeep,were constructed and tested.Different parameters like type of concrete (normal – and lightweight), reinforcement ratio, reinforcement configuration and the existence of top reinforcement are considered in order to assess their influence on static behaviour and shear strength of concrete slabs. Furthermore several codes and theoretical models applied for predicting shear strength of concrete members reinforced with GFRP rebars have been compared with test results, and the discrepancies and compatibilities have been established and discussed. The lack of code models to predict accurately shear strength of LWconcrete slabs reinforced with GFRP has been revealed.
  1. ACI 440.1R. 2006. Guide for the design and construction of structural concrete reinforced with FRP bars.
  2. ACI 440.1R. 2015. Guide for the design and construction of structural concrete reinforced with Fiber-Reinforced Polymer (FRP) bars.
  3. CNR-DT 203. 2006. Guide for the Design and Construction of Concrete Structures Reinforced with Fiber-Reinforced Polymer Bars.
  4. CSAS806. 2002.Design and construction of building components with fibre-reinforced polymers.
  5. CSA S806. 2012. Design and construction of building structures with fibre-reinforced polymers.
  6. DIN 1048-5. 1991. Testing concrete; testing of hardened concrete (specimens prepared in mould).
  7. ISO 10406-1. 2015. Fibre-reinforced polymer (FRP) reinforcement of concrete – Test methods – Part 1: FRP bars and grids.
  8. JSCE, 1997. Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials.
  9. Liu Ruifen, Chris Pantelides. 2013. „Shear strength of GFRP reinforced precast lightweight concrete panels.” Construction and BuildingMaterials 48: 51 – 58. DOI: 10.1016/j.conbuildmat. 2013.06.057.
  10. Markiewicz Barbara, Karol Pereta, Grzegorz Piatkowski. 2015. „The dynamic properties of the bridge deck model reinforced with FRP bars.” MATEC Web of Confrences, 24, 09005. DOI: 10.1051/matecconf/20152409005.
  11. PN-EN 12390-1:2013. Badania betonu. Część 1: Kształt, wymiary i inne wymagania dotyczące próbek do badaniai form.
  12. PN-EN 12390-2:2011. Badania betonu. Część 2: Wykonywanie i pielęgnacja próbek do badań wytrzymałościowych.
  13. PN-EN 12390-3:2011. Badania betonu. Część 3: Wytrzymałość na ściskanie próbek do badań.
  14. PN-EN 12390-6: 2011. Badania betonu. Część 6: Wytrzymałość na rozciąganie przy rozłupywaniu próbek do badań.
  15. PN-EN 1992-1-1:2008. Eurokod 2. Projektowanie konstrukcji z betonu. Część 1-1: Reguły ogólne i reguły dla budynków.
  16. Siwowski Tomasz, Damian Kaleta,Mateusz Rajchel, LechWłasak. 2017. „The first Polish road bridge made of FRP composites.” Structural Engineering International 27 (2): 308 – 314. DOI: 10.2749/101686617X14881932436339.
  17. Wiater Agnieszka, Tomasz Siwowski. 2017. „Nośność na ścinanie zginanych elementów betonowych zbrojonych prętami kompozytowymi FRP w świetle wybranych procedur obliczeniowych.” Czasopismo Inżynierii Lądowej, Środowiska i Architektury/Journal of Civil Engineering, Environment and Architecture, 64 (2/II/17): 267 – 297. DOI: 10.7862/rb.2017.98
  18. Wiater Agnieszka, Tomasz Siwowski. 2017. „Lightweight concrete bridge deck slabs reinforced with GFRP composite bars.” Roads and Bridges – Drogi i Mosty, 16 (4): 279 – 293. DOI: 10.7409/rabdim.017.018
  19. Wiater Agnieszka. 2017. „Research on the lightweight concrete bridge deck slabs reinforced with GFRP composite bars.” Architecture – Civil Engineering – Environment, ACEE, 10 (4): 115 – 120. DOI: 10.21307/acee-2017-055.

mgr inż. Agnieszka Wiater, Politechnika Rzeszowska; Wydział Budownictwa, Inżynierii Środowiska i Architektury ORCID: 0000-0001-5559-3841 prof. dr hab. inż. Tomasz Siwowski, Politechnika Rzeszowska; Wydział Budownictwa, Inżynierii Środowiska i Architektury ORCID: 0000-0002-2003-000X

mgr inż. Agnieszka Wiater, Politechnika Rzeszowska; Wydział Budownictwa, Inżynierii Środowiska i Architektury ORCID: 0000-0001-5559-3841

wiater@prz.edu.pl

Full paper is available at Publisher house SIGMA-NOT Sp. z o.o. webpage

DOI: 10.15199/33.2020.05.06