Resistance of construction profiles made of polymer composites reinforced with cereal husks to the fungi


openaccess, Vol. 601 (9) 2022 / czwartek, 22 września, 2022

(Open Access)

DOI: 10.15199/33.2022.09.08

Sudoł Ewa, Kozikowska Ewelina, Goron Maria. 2022. Resistance of construction profiles made of polymer composites reinforced with cereal husks to the fungi. Volume 601. Issue 9. Pages 70-75. Article in PDF file

Accepted for publication: 12.08.2022 r.

The resistance to fungi of oat, millet and rice husks reinforced PVC composite profiles was analysed. Products with oat and rice husks showed comparable susceptibility to Coniophora puteana, Gloeophyllum trabeum and Coriolus versicolor, lower than the composite with millet husks. Coniophora puteana showed the highest degree of mycelium growth, changing the morphology of the profile surface. Exposure to fungi in a wet condition caused a decrease in flexural strength and modulus of elasticity, the greatest in the case of millet husks reinforced composite. The influence of the wet conditions itself was crucial. The microorganisms slightly changed the bending properties.
  1. Gurunathan T,Mohanty S, Nayak SK.Areview of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. A Appl. Sci. Manuf. 2015. doi.org/10.1016/j.compositesa. 2015.06.007.
  2. Maraveas C. Production of Sustainable Construction Materials Using Agro-Wastes. Materials. 2020. doi. org/10.3390/ma13020262.
  3. Azman MA,Asyraf MRM, KhalinaA, Petrů M, Ruzaidi CM, Sapuan SM,Wan NikWB, IshakMR, IlyasRA, SurianiMJ.Natural FiberReinforcedComposite Material for Product Design:AShort Review. Polymers. 2021. doi. org/10.3390/polym13121917.
  4. Väisänen T, Das O, Tomppo LA. Review on new bio-based constituents for natural fiber-polymer composites. J. Clean. Prod. 2017. DOI. org/10.1016/j.jclepro.2017.02.132.
  5. Czarnecki L, Van Gemert D. Innovation in construction materials engineering versus sustainable development. Bull. Polish Acad. Sci. Tech. Sci. 2017; 65: 765 – 771.
  6. Regulation (EU) No 305/2011 of the European Parliament and of the Council.
  7. Schirp A, Wolcott MP. Influence of fungal decay and moisture absorption on mechanical properties of extruded wood-plastic composites.Wood Fiber Sci. 2005; 37: 643 – 652.
  8. Morris PI, Cooper P. Recycled plastic/wood composite lumber attacked by fungi. For. Prod. J. 1998; 48: 86 – 88.
  9. KirkPM,CannonPF,MinterDW,Stalpers JA.Dictionary of the Fungi (10thedn).Wallingford,UK. 2008.
  10. Gautam R, Bassi AS, Yanful EK. A review of biodegradation of synthetic plastic and foams.Appl. Biochem. Biotechnol. 2007. https://doi. org/10.1007/s12010-007-9212-6.
  11. Leja K, Lewandowicz G. Polymer biodegradation and biodegradable polymers – A review. Pol. J. Environ. Stud. 2010; 19: 255 – 266.
  12.  Yap SY, Sreekantan S, Hassan M, Sudesh K, Ong MT. Characterization and Biodegradability of Rice Husk-Filled Polymer Composites. Polymers 2021. doi.org/10.3390/polym13010104.
  13. Rajak DK, Pagar DD, Menezes PL, Linul E. Fiber-Reinforced Polymer Composites:Manufacturing, Properties, and Applications. Polymers. 201. doi. org/10.3390/ polym11101667.
  14.  Fabiyi JS, McDonald AG, Morrell JJ, Freitag C. Effects of wood species on durability and chemical changes of fungal decayed wood plastic composites. CompositesPartA:AppliedScience andManufacturing. 2011. doi.org/10.1016/j.compositesa. 2011.01.009.
  15.  CattoAL, Rosseto ES, ReckMA, Rossini K, da Silveira RMB, Santana RMC. Growth of white rot fungi in composites produced fromurban plastic waste and wood. In Macromolecular Symposia 2014. https://doi.org/10.1002/masy. 201300216.
  16.  Camarero S, Martínez MJ, Martínez AT. Understanding lignin biodegradation for the improved utilization of plant biomass inmodern biorefineries. Biofuels, Bioproducts and Biorefining. 2014. https://doi. org/10.1002/bbb. 1467.
  17.  Catto AL, Montagna LS, Almeida SH, Silveira RM, Santana RM.Wood plastic composites weathering: Effects of compatibilization on biodegradation in soil and fungal decay. International Biodeterioration and Biodegradation 2016. https://doi. org/10.1016/j. ibiod. 2015.12.026.
  18. MankowskiM,Morrell JJ.Patterns of fungal attack inwood-plastic composites following exposure in a soil block test.Wood and Fiber Science. 2000. https://ir.library. oregonstate.edu/concern/articles/fn106z43g.
  19.  Naumann A, Seefeldt H, Stephan I, Braun U, Noll M. Material resistance of flame retarded wood-plastic composites against fire and fungal decay. Polym. Degrad. Stab. 2012. https://doi. org/10.1016/j.polymdegradstab.2012.03.031
  20.  Ashori A, Behzad HM, Tarmian A. Effects of chemical preservative treatments on durability of wood flour/HDPE composites. Composites. 2013. https://doi.org/10.1016/j.compositesb.2012.11.022
  21.  Friedrich D, LuibleA. Standard-compliant development of a design value for wood–plastic composite cladding:An application-oriented perspective. Case Stud. Struct. Eng. 2016, 5, 13–17. doi.org/10.1016/j.csse. 2016.01.001.
  22.  Vercher J, FombuenaV, DiazA, SorianoM. Influence of fibre and matrix characteristics on properties and durability of wood–plastic composites in outdoor applications. J. Thermoplast. Compos. Mater. 2020, 33, 477 – 500. Doi.org/10.1177/0892705718807956.
  23.  Pratheep V, Priyanka E, Hare Prasad P. Characterization and Analysis of Natural Fibre-Rice Husk with Wood Plastic Composites. IOP Conf. Ser. Mater. Sci. Eng. 2019, 561, 012066.
  24. EN 84. Wood Preservatives. Accererated Ageing of Treted Wood Prior to Biological Testing. Leaching Procedurę; European Committee for Standardization (CEN): Brussels, Belgium, 1997.
  25.  ENV 12038. Durability ofWood andWood-Based Products.Wood-Based Panels.Method of Test for Determining the Resistance againstWood-Destroying Basidiomycetes; European Committee for Standardization (CEN): Brussels, Belgium, 2002.
  26.  EN ISO 178. Plastics. Determination of Flexural Properties; European Committee for Standardization (CEN): Brussels, Belgium, 2019.
  27.  EN 15534-1; Composites Made from Cellulose- Based Materials and Thermoplastics (Usually CalledWood-Polymer Composites (WPC) or Natural Fibre Composites (NFC)). Part 1: Test Methods for Characterisation of Compounds and Products. European Committee for Standardization (CEN): Brussels, Belgium, 2014.
  28. Wiejak A, Francke B. Testing and Assessing Method for the Resistance ofWood-Plastic Composites to the Action of Destroying Fungi. Materials. 2021. doi. org/10.3390/ma14030697.
  29.  Sudoł E, Kozikowska E, Choińska E. The Utility of RecycledRice Husk-Reinforced PVCComposite Profiles for Façade Cladding. Materials.2022. doi. org/10.3390/ma15103418.
  30. Ibach R, GnatowskiM, Sun G, Glaeser J, Leung M, Haight J. Laboratory and environmental decay of wood – plastic composite boards: Flexural properties. WoodMater. Sci. Eng. 2018; 13: 81 – 96.
  31. PrasadA, Rao K.Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo.Mater.Des. 2011. doi. org/10.1016/j.matdes. 2011.03.015.
  32. WasiakM.Wpływczynnikówśrodowiskowych na użyteczność budowlanąwyrobówz kompozytów włókno-polimerowych (NFPCs), Instytut Techniki Budowlanej, Sprawozdanie roczne nr NZM- -058/2021 zad. 1 (opracowanie niepublikowane).
dr inż. Ewa Sudoł, Instytut Techniki Budowlanej; Zakład Inżynierii Materiałów Budowlanych ORCID: 0000-0003-2902-0497
dr inż. Ewelina Kozikowska, Instytut Techniki Budowlanej; Zakład Inżynierii Materiałów Budowlanych ORCID: 0000-0001-7323-3663
inż. Maria Goron, Instytut Techniki Budowlanej; Zakład Inżynierii Materiałów Budowlanych ORCID: 0000-0002-1826-6689

dr inż. Ewa Sudoł, Instytut Techniki Budowlanej; Zakład Inżynierii Materiałów Budowlanych ORCID: 0000-0003-2902-0497

 e.sudol@itb.pl

Full paper:

DOI: 10.15199/33.2022.09.08

Article in PDF file

English article in PDF file