Numerical and experimental analysis of the precast concrete slabs reinforced with high grade steel bars with special supporting conditions


openaccess, Vol. 618 (2) 2024 / piątek, 23 lutego, 2024

(Open Access)

DOI: 10.15199/33.2024.02.05

Dutkiewicz Maciej, Griniov Vadim, Majkowski Paweł. 2024. Numerical and experimental analysis of the precast concrete slabs reinforced with high grade steel bars with special supporting conditions. Volume 618. Issue 2. Pages 21-25. Article in PDF file

Accepted for publication: 31.01.2024 r.

The paper presents experimental and numerical studies to determine the main characteristics of bent reinforced concrete precast slabs. We tested 45 reinforced concrete slabs with a constant load, in a specially made steel stand. The main purpose of the test is to study the effect of the thickness and percentage of reinforcement of slabs on strength and deformability. The zone of a slab with a constant moment was studied. It was revealed that slabs with a thickness 120 mm showed a more brittle fracture similar to the destruction of compressed concrete elements, while thin plates 80 mm collapsed in a quieter nature. As a result of numerical and experimental analyses, it was found that the use of B600B steel allows for more economical use of reinforcing steel. In the experimental research, a diagnostic systemfor measuring displacements and strains was used, which can be easily implemented in the conditions of use of the real structure. The obtained experimental results were compared with the results obtained from the analysis of the numerical model.
  1. PN-G-06002:1997. Podziemne wyrobiska korytarzowe i komorowe – Obudowa betonowa monolityczna – Wymagania i badania.
  2. https://helpiks.org/7-9366.html.
  3. Petraroia DN, Mark P. Variable, full-scale tester for tunnel linings. Structural Concrete. 2021; https://doi.org/10.1002/suco.202000806.
  4. Mohammad SH, Erick AB, Rémy DL, Andrés L. High-Strength Steel Bars in Earthquake- Resistant Reinforced Concrete T-Shaped Walls. ACI Structural Journal. 2021; https://doi: 10.14359/51728091.
  5. Chiew SP, Zhao M, Cai Y. Towards the Use of High Strength Steel for Construction Productivity.Australasian Structural Engineering Conference: ASEC 2016. https://hdl. handle.net/10356/80597.
  6. Berger J. Effects of flexural stiffness on constraints of imposed deformations in reinforced concrete structures. Engineering Structures. 2022; https://doi.org/10.1016/j.engstruct. 2022.114973.
  7. Berger J, Pfeiffer M, Feix J. Extended experimental and numerical investigations on constraint forces from imposed deformations. Structural Concrete. 2020; https://doi.org/10.1002/suco. 201900450.
  8. Yi ST, Kim JHJ, Kim JK. Effect of Specimen Sizes on ACI Rectangular Stress Block for Concrete Flexural Members. ACI Structural Journal. 2002, pp. 701-708.
  9. Ibrahim HHH, MacGregor JG. Modification of the ACI Rectangular Stress Block for High- -Strength Concrete.ACI Structural Journal,V. 94, No. 1, January-February 1997, pp. 40-48.
  10. Sakanov КT. Limiting deformations of concrete in elements with a non-rectangular shape of the compressed zone. Science and technology of Kazakhstan №1, 2010. pp. 93-96.
  11. NikulinAI. On clarifying the limiting relative strains of concrete in the compression area of bending reinforced concrete elements Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and Civil Engineering. 2014, no. 8, pp. 12–15.
  12. Shkurupiy ОA. Ultimate concrete compressibility in reinforced concrete elements. Modern industrial and civil construction. „. 4, N4, 2008, pp. 207-212.
  13. Kim JK, Yi ST, Yang EI. Size Effect on Flexural Compressive Strength of Concrete Specimens. ACI Structural Journal, V. 97, No. 2, March-April 2000, pp. 291-296.
  14. Borges JUA, Subramaniam KV, Weiss WJ, Shah SP, Bittencourt TN. Length Effect on Ductility of Concrete in Uniaxial and Flexural Compression. ACI Structural Journal, V. 101, No. 6, November-December 2004, pp. 765-772.
  15. Repin V, Grinyov V. International Scientific Siberian Transport Forum TransSiberia – 2021. The Experience in Automating Scientific Research to Identify Dangerous Zones in the Near- -Support Sections of Wooden Beams. pp 1230–1238. https://doi.org/10.1007/978-3- 030-96383-5_137.
  16. Program BETA 4.0. PSU. Petsold TМ, Lazowski DN, Gluchow DO.
dr hab. inż. Maciej Dutkiewicz, prof. PBŚ, Politechnika Bydgoska, Wydział Budownictwa, Architektury i Inżynierii Środowiska ORCID: 0000-0001-7514-1834
dr inż. Vadim Griniov, Politechnika Bydgoska, Wydział Budownictwa, Architektury i Inżynierii Środowiska ORCID: 0000-0003-1212-1996
mgr inż. Paweł Majkowski, Politechnika Bydgoska, Wydział Budownictwa, Architektury i Inżynierii Środowiska ORCID: 0000-0002-2645-9448

dr hab. inż. Maciej Dutkiewicz, prof. PBŚ, Politechnika Bydgoska, Wydział Budownictwa, Architektury i Inżynierii Środowiska ORCID: 0000-0001-7514-1834

 maciej.dutkiewicz@pbs.edu.pl

Full paper:

DOI: 10.15199/33.2024.02.05

Article in PDF file