Minimal volume of music rehearsal rooms – the impact of acoustic adaptation

openaccess, Vol. 612 (8) 2023 / piątek, 25 sierpnia, 2023

(Open Access)

DOI: 10.15199/33.2023.08.11

Warzocha Karolina, Ziarko Bartłomiej. 2023. Minimal volume of music rehearsal rooms – the impact of acoustic adaptation. Volume 612. Issue 8. Pages 50-53. Article in PDF file

Accepted for publication: 31.07.2023 r.

The aim of the paper is to determine the minimal volume of music rehearsal rooms dedicated to small ensembles, and to verify the impact of the acoustic adaptation on the analysis results. The conducted simulations showed that properly selected finishing materials not only make it possible to achieve the desired reverberation time in the entire frequency range, but also reduce the average value of the sound level in themusic rehearsal room by 2.8 – 4.8 dB; and thus reduce the required minimal volume of the rooms by up to four times.
  1. Kahle E, Wulfrank T, Jurkiewicz Y, Brulez J. Music rehearsal rooms: loudness levels and quantity of absorption as a function of use. Forum Acusticum – Kraków 2014.
  2. Osman R. Designing small practice rooms for sound quality. Proceeding of 20th International Congress on Acoustics (ICA), Sydney 2010.
  3.  Rindel JH. New Norwegian standard on the acoustics of rooms for music rehearsal and performance. Forum Acusticum – Kraków 2014.
  4.  Jansen EJ, Helleman HW, Dreschler WA, De Laat JA. Noise induced hearing loss and other hearing complaints among musicians of symphony orchestras. International Archives of Occupational and Environmental Health 2009; 82 (2): 153 – 164.
  5.  Pawlaczyk-Łuszczyńska M, Zamojska M, Dudarewicz A, Zaborowski K. Noise – induced hearing loss in professional orchestral musicians. Archives of Acoustics 2013; 38 (2): 223 – 234.
  6. Phillips SL,HenrichVC,Mace S. Prevalence of noise – induced hearing loss in student musicians. International Journal of Audiology 2010; 49 (4).
  7. Pietrzak AP. Ocena ekspozycji muzyków na dźwięk z wykorzystaniem dwukanałowej dozymetrii hałasowej. Wydział Elektroniki i Technik Informacyjnych, Politechnika Warszawska 2021; praca doktorska.
  8.  Schmidt JH, Pedersen ER, Paarup HM, Christensen- Dalsgaard J, Andersen T, Poulsen T, Baelum J. Hearing loss in relation to sound exposure of professional symphony orchestramusicians. Ear and Hearing 2014; 35 (4): 448 – 460.
  9.  Stadio A, Dipietro L, Ricci G, Della VolpeA, MinniA, GrecoA, DeVincentiisM, RalliM. Hearing loss, tinnitus, hyperacusis and displacusis inprofessionalmusicians: a systematic review. International Journal of Environment Research and Public Health 2018; vol. 15 (10): 2120.
  10.  ISO 23591:2021; Acoustic quality criteria for music rehearsal rooms and spaces.
  11.  Meissner M. A Novel Method for Determining Optimum Dimension Ratios forSmall Rectangular Rooms. Archives of Acoustics 2018; vol. 43 (2): 217 – 225.
  12. Rindel JH. Searching the musical rehearsal room. BNAM-2020, Oslo, Norwegia.
  13. Rindel JH. Preferred Dimension Ratios of Small Rectangular Rooms. JASA ExpressLetters 1 (2) 2021; 021601: 1 – 6.
  14. KusyM. Statystyczny Polak – studiumprzypadku na podstawie wyników badań ankietowych. StatSoft Polska 2013.
  15.  Beranek LL. Acoustics. Acoustical Society of America, New York 1954. [16] Wenmaekers R, Hak C. Asound level distribution model for symphony orchestras: possibilities and limitations. Psychomusicology: Music, Mind, and Brain 2015;
mgr inż. arch. Karolina Warzocha, Politechnika Krakowska ORCID: 0000-0001-8552-2315
mgr inż. arch. Bartłomiej Ziarko, Politechnika Krakowska ORCID: 0000-0002-8836-5586

mgr inż. arch. Karolina Warzocha, Politechnika Krakowska ORCID: 0000-0001-8552-2315

Full paper:

DOI: 10.15199/33.2023.08.11

Article in PDF file