Investigation on the creep strains of high-strength cement mortar modified with steel fibers


openaccess, Vol. 615 (11) 2023 / wtorek, 28 listopada, 2023

(Open Access)

DOI: 10.15199/33.2023.11.10

Bywalski Czesław. 2023. Investigation on the creep strains of high-strength cement mortar modified with steel fibers. Volume 615. Issue 11. Pages 46-50. Article in PDF file

Accepted for publication: 23.10.2023 r.

The aim of the article was to present the results of creep deformation tests conducted for 1.5 years on high-strength cement mortar modified with steel fibers. Mortars with fiber contents of 0, 50, 100 and 150 kg/m3 were tested. The addition of fibers slightly reduced the creep strains, but the degree of their reduction did not depend significantly on the fiber content. The research results can be used to expand the databases on the creep of cement composites, which are currently too modest to enable the development of new or modification of existing empirical models of creep, which is emphasized in current publications on the presented topic.
  1. Shannag M J. High-performance cementitious grouts for structural repair. Cement and Concrete Research, 2002; https://doi.org/10.1016/S0008- 8846(02)00710-X.
  2. Peng G, Hu X, Niu D, Zhong S, Huang D. Experimental and theoretical study on the flexural behavior of RC beams strengthened with cementitious grout. Engineering Structures. 2022; https://doi.org/10.1016/j.engstruct.2022.114713.
  3. Peng G, Hu X, Niu D, Zhong S. Study on the axial compression behavior of RC columns strengthened with cementitious grout. Engineering Structures. 2023: https://doi. org/10.1016/j. engstruct. 2023.115742.
  4. Karta informacji technicznej APVM 100 Zaprawa do podlewek. AP Serwis Inżynieria Budowlana.
  5. Bywalski C, Kamiński M, Michalski P. O perspektywach nowych zastosowań szybkosprawnych zapraw mineralnych. Materiały Budowlane. 2014; 6: 70-1.
  6. da Rocha Gomes S, Ferrara L, Sanchez L, Sanchez Moreno M. A comprehensive review of cementitious grouts: Composition, properties, requirements and advanced performance. Constr. Build. Mater. 2023; https://doi.org/10.1016/j. conbuildmat. 2023.130991.
  7. Ma C, TanY, Li E, DaiY, YangM.High-Performance Grouting Mortar Based on Mineral Admixtures. Advances in Materials Science and Engineering. 2015; http://dx.doi.org/10.1155/2015/425456.
  8. Yang Y, Chen B, Chen Y, Liu F, Xie X, Guo W.,Wang H. Effect of admixtures and PVA fiber on the mechanical properties of high strength cementitious grout. Case Studies in Construction Materials. 2023; https://doi.org/10.1016/j. cscm. 2023. e01884.
  9. Yang Y, Chen B, Chen Y, Liu F, Xie X, Guo W, Wang H, Development of a high strength cementitious grout for filling the joints of UHPC permanent formwork. Developments in the Built Environment. 2023; https://doi.org/10.1016/j. dibe. 2023.100120.
  10. Chang Z, Liang M, XuY, Wan Z, Schlangen E, Šavija B. Early-age creep of 3D printable mortar: Experiments and analytical modelling. Cement and Concrete Composites. 2023; https://doi. org/10.1016/j.cemconcomp. 2023.104973.
  11. Esposito L, Casagrande L, Menna C, Asprone D, Auricchio F. Early-age creep behaviour of 3D printable mortars: experimental characterisation and analyticalmodelling.Mater. Struct. 2021; https://doi.org/10.1617/s11527-021-01800-z).
  12. Liang S, Du H, Liu Y, Chen Y, Liu J,Wei Y. Experimental study and mesoscale finite element modeling of elasticmodulus and flexural creep of steel fiber-reinforced mortar. Constr. Build. Mater. 2023; https://doi.org/10.1016/j.conbuildmat. 2022.129875.
  13.  Tošič N, Aidarov S, de la Fuente A. Systematic review on the creep of fiber-reinforced concrete. Materials. 2020; https://doi. org/10.3390/ma- 13225098.
  14. Zhang Y, Zhu Y, Xu Z, Shao X. Long-term creep behavior of NC filled UHPC tube composite column. Engineering Structures. 2022; https://doi.org/10.1016/j.engstruct.2022.114206.
  15.  Kamiński M, Bywalski C, Musiał MP, Trapko T, Michalski P. Rheological strains of high-performance expansivemortar. Proceedings of the eighth international conference: Creep, shrinkage and durability mechanics of concrete and concrete structures, Ise-Shima, Japan, 30 September-2 October 2008. Vol. 1 / eds by Tadaaki Tanabe [i in.]. Leiden : CRC Press/Balkema, 2008, s. 337-342.
  16. Bywalski C, Kamiński M, Maszczak M, Balbus Ł. Influence of steel fibres addition onmechanical and selected rheological properties of steel fibre high-strength reinforced concrete.Arch. Civ. Mech. Eng. 2015: http://dx.doi.org/10.1016/j.acme. 2014.05.013
  17. PN-EN 1992-1-1:2008: Eurokod 2. Projektowanie konstrukcji z betonu. Część 1-1: Reguły ogólne i reguły dla budynków.
  18.  Knauff M. Obliczanie konstrukcji żelbetowych według Eurokodu 2.Warszawa:Wydawnictwo Naukowe PWN; 2013.
  19. Jasiczak J, Wdowska A, Rudnicki T. Betony ultrawysoko wartościowe. Kraków: Stowarzyszenie Producentów Cementu; 2008.
dr inż. Czesław Bywalski, Politechnika Wrocławska, Wydział Budownictwa Lądowego i Wodnego ORCID: 0000-0003-0460-9000

dr inż. Czesław Bywalski, Politechnika Wrocławska, Wydział Budownictwa Lądowego i Wodnego ORCID: 0000-0003-0460-9000

czeslaw.bywalski@pwr.edu.pl

Full paper:

DOI: 10.15199/33.2023.11.10

Article in PDF file