Influence of propellant on the extinguishing efficiency of fixed mist systems used to protect facilities


openaccess, Vol. 611 (7) 2023 / piątek, 21 lipca, 2023

(Open Access)

DOI: 10.15199/33.2023.07.08

Markowska Dorota, Wolny Paweł. 2023. Influence of propellant on the extinguishing efficiency of fixed mist systems used to protect facilities. Volume 611. Issue 7. Pages 37-40. Article in PDF file

Accepted for publication: 31.06.2023 r.

The article presents the results of a laboratory study of the effect of the type of propellant and the volumetric flow rate of water on the extinguishing effectiveness of a designed andmanufactured fixed water mist fire protection system. Compressed air or nitrogen was used as the driving gas. During the tests, the temperature and its rate of decrease, the time of suppression of the test fire flame and the oxygen concentration in the room were measured. A stack of pine wood beams was used for the fire tests. The highest extinguishing efficiency of the water mist system was obtained for the test, where the volumetric flow rate of water was 3 dm3/s and the driving agent was nitrogen. The results show that the type of gas used in the water mist fire protection systemand takes part in extinguishing,which undermines the provisions of the NFPA750 standard. The standard assumes that the extinguishing time used by the standard is so short that the type of gas does not affect the fire suppression process itself.
  1. EVS-EN 14972-1:2021 Fixed firefighting systems –Watermist systems –Design and installation.
  2. NFPA 750: 2023 Standard on Water Mist Fire Protection Systems.
  3. Roguski J, Zbrożek P, Czerwienko D. Selected aspects of using water fog extinguishing devices in buildings.Monografie CNBOP-PIB, 2012.
  4. Wolny P. Analysis of the extinguishing efficiency of hybrid systems using water mist with an operatingmediumin the formof inert gases, dissertation. TheMain School of Fire Service.Warsaw 2019.
  5. Raia P, Gollner MJ. Literature Review on Hybrid Fire Suppression Systems. University ofMaryland, Fire Protection Research Foundation, College Park (Maryland), 2014.
  6. Liu Z,Kim AK.Are view of water mist fire suppression systems – fundamental studies. Journal of Fire Protection Engineering. 2000, 10 (3): 32 – 50.
  7. Mawhinney JR. A review of water mist fire suppression research and development, H. Associates, Baltimore (Maryland). 1996.
  8.  FMApproval 5560,WaterMist Systems. Norwood (MA) 20172021.
  9. NFPA770:2011 2021 Standard on Hybrid (Water and Inert Gas) Fire-Extinguishing Systems.
  10.  Gałaj J, Drzymała T, Wolny P. Analysis of the impact of selected parameters of the hybrid extinguishing system on the fire environment in a closed room. Sustainability. 2019; https://doi. org/10.3390/su11236867.
  11.  Klapsa W, Suchecki S, Bąk D, Dziechciarz A. Czynniki narażenia podczas pożarów[w:] red. Guzewski P.,Małozięć D., Wróblewski D., Czerwona Księga Pożarów: Wybrane problemy pożarów oraz ich skutków. Tom1,Wyd. CNBOP, Józefów 2016.
dr inż. Dorota Markowska, Politechnika Łódzka, Wydział Inżynierii Procesowej i Ochrony Środowiska ORCID: 0000-0002-5504-7725
dr inż. Paweł Wolny, Politechnika Łódzka, Wydział Inżynierii Procesowej i Ochrony Środowiska ORCID: 0000-0003-2161-4506

dr inż. Paweł Wolny, Politechnika Łódzka, Wydział Inżynierii Procesowej i Ochrony Środowiska ORCID: 0000-0003-2161-4506

 pawel.wolny@p.lodz.pl

Full paper:

DOI: 10.15199/33.2023.07.08

Article in PDF file