Experimental tests on combustion of wood-CFRP composite beams in a full scale

openaccess, Vol. 611 (7) 2023 / piątek, 21 lipca, 2023

(Open Access)

DOI: 10.15199/33.2023.07.06

Kawecki Bartosz, Pieńko Michał, Lipecki Tomasz. 2023. Experimental tests on combustion of wood-CFRP composite beams in a full scale. Volume 611. Issue 7. Pages 29-32. Article in PDF file

Accepted for publication: 5.06.2023 r.

The paper presents comparative results of the local combustion of 24 full scale beams, statically loaded, made of wood-CFRP composite and glue laminated timber. An effort of the samples was 90%, in the class of glue laminated timber GL24h. The combustion time until beams’ failure, deflection increment and element temperature were measured. Summarising the gathered results, a trend allowing to conclude that CFRP tapes used inside the cross-section can increase the fire resistance of the beams is noticeable, but they must be protected by the wood during fire exposure.
  1. Nowak T. Zastosowanie materiałów kompozytowych do wzmacniania konstrukcyjnych elementów drewnianych, Materiały Budowlane. 2019; 1: 22 – 26.
  2. Sobczak-Piąstka J. Metoda badania belki zginanej wykonanej z drewna klejonego ze zbrojeniem mieszanym, Materiały Budowlane. 2021; 1: 30 – 32.
  3. Bakalarz M M, Kossakowski PG. Strengthening of Full-Scale Laminated Veneer Lumber Beams with CFRP Sheets, Materials. 2022; 15.
  4. Halicka A, Ślósarz S. Analysis of behavior and failure modes of timber beams prestressed with CFRP strips, Composite Structures. 2022; 301: 116171.
  5. Kawecki B. Selection of the parameters for numerical models of full girders made of wood-polymer composites reinforced with fibres (in Polish), Wydawnictwo Politechniki Lubelskiej, Lublin, Poland. http://bc.pollub. pl/dlibra/publication/13966, 2021.
  6. Kawecki B, Podgórski J.The Effect ofGlueCohesive Stiffness on the Elastic Performance of BentWood–CFRP Beams.Materials. 2020; 13: 1 – 230.
  7.  Kawecki B. Guidelines for FEMmodelling of wood-CFRP beams using ABAQUS, Archives of Civil Engineering. 2021; 67: 175 – 191.
  8. Kawecki B, Podgórski J. 3D ABAQUS simulation of bent softwood elements, Archives of Civil Engineering. 2020; 66: 323 – 337.
  9.  Kawecki B. Numerical Modelling and Experimental Testing on Polyurethane Adhesively Bonded Joints Behaviour in Wood-Wood and Wood-Carbon Fibre Reinforced Polymer Layouts,Advances in Science and Technology Research Journal. 2023; 17: 36 – 52.
  10.  Firmanti A, Subiyanto B, Takino S, Kawai S. The critical stress in various stress levels of bending member on fire exposure for mechanical graded lumber, Journal of Wood Science. 2004; 50: 385 – 390.
  11. Firmanti A, Subiyanto B, Kawai S. Evaluation of the fire endurance ofmechanically graded timber in bending, Journal of Wood Science. 2006; 52: 25 – 32.
  12. Qin R, Zhou A, Chow CL, Lau D. Structural performance and charring of loaded wood under fire, Engineering Structures. 2021; 228: 111491.
  13. Schmid J, König J, Köhler J. Fire-exposed crosslaminated timber - Modelling and tests, 11th World Conference on Timber Engineering 2010,WCTE. 2010; 4: 3268 – 3276.
  14. Lineham SA, Thomson D, Bartlett AI, Bisby LA, Hadden RM. Structural response of fire-exposed crosslaminated timber beams under sustained loads. Fire Safety Journal. 2016; 85: 23 – 34.
  15. Fahrni R., Klippel M., Just A., Ollino A., Frangi A., Fire tests on glued-laminated timber beams with specific local material properties, Fire Safety Journal. 2019; 107: 161 – 169.
  16.  Wang Y, Zhang J, Mei F, Liao J, Li W. Experimental and numerical analysis on fire behaviour of loaded cross-laminated timber panels. Advances in Structural Engineering. 2020; 23: 22 – 36.
  17. Yang TH,Wang SY, TsaiMJ, Lin CY, ChuangYJ. Effect of fire exposure on the mechanical properties of glued laminated timber. Materials and Design. 2009; 30: 698 – 703.
  18.  Quiquero H, Chorlton B, Gales J. Performance of adhesives in glulam after short term fire exposure. International Journal of High-Rise Buildings. 2018; 7: 299 – 311.
  19.  Chorlton B, Gales J. Mechanical performance of laminated veneer lumber and glulam beams after short-term incident heat exposure. Construction and Building Materials. 2020; 263: 120129.
  20. Ogawa H. Architectural application of carbon fibers development of new carbon fiber reinforced glulam. Carbon. 2000; 38,: 211–226.
  21.  Martin ZA, Tingley DA. Fire resistance of FRP reinforced glulam beams, Proceedings of theWorld Conference on Timber Engineering. 2000.
  22.  PN-EN 14080:2013 Timber structures. Glued laminated timber and glued solid timber. Requirements, in: Polski Komitet Normalizacyjny, Warsaw, Poland.
  23.  Sulik P. Prędkość zwęglania wybranych krajowych gatunków drewna, Materiały Budowlane. 2022; 1: 101 – 104.
  24.  PN-EN 1995-1-2:2008 Eurocode 5: Design of timber structures - Part 1-2: General - Structural fire design, in: Polski Komitet Normalizacyjny, Warsaw, Poland.
  25. PN-EN 1363-1:2020 Fire resistance tests - Part 1: General requirements, in: Polski Komitet Normalizacyjny, Warsaw, Poland.
  26. Krajnc N. Wood Fuels Handbook, Food and Agriculture Organization of the United Nations, Pristina, 2015.
  27.  Cichy W, Witczak M, Walkowiak M. Fuel properties of woody biomass from pruning operations in fruit orchards, BioResources. 2017; 12: 6458 – 6470.
dr inż. Bartosz Kawecki, Politechnika Lubelska, Wydział Budownictwa i Architektury ORCID: 0000-0001-8134-5956
dr inż. Michał Pieńko, Politechnika Lubelska, Wydział Budownictwa i Architektury ORCID: 0000-0002-9653-8539
dr hab. inż. Tomasz Lipecki, prof. PL, Politechnika Lubelska, Wydział Budownictwa i Architektury ORCID: 0000-0002-2867-773X

dr inż. Bartosz Kawecki, Politechnika Lubelska, Wydział Budownictwa i Architektury ORCID: 0000-0001-8134-5956


Full paper:

DOI: 10.15199/33.2023.07.06

Article in PDF file