EPS Influence of sample dimensions on the value of compressive stress at 10% deformation of EPS polystyrene


openaccess, Vol. 604 (12) 2022 / wtorek, 27 grudnia, 2022

(Open Access)

DOI: 10.15199/33.2022.12.30

Domski Jacek, Domska Irena. 2022. EPS Influence of sample dimensions on the value of compressive stress at 10% deformation of EPS polystyrene. Volume 604. Issue 12. Pages 111-114. Article in PDF file

Accepted for publication: 07.11.2022 r.

The article presents an analysis of the test results of compressive stress at 10% deformation, obtained for EPSi (for load bearing applications) polystyrene boards samples. The influence of the dimensions of the samples, compliant with the requirements of various standards, on the value of the compressive stress at 10%strain was examined. It was concluded in the scope of the analyzed test results, that the size of the polystyrene sample did not significantly affect the compressive stress.
  1. Yu Q, Zhao Y, Dong A, Li Y. Mechanical properties of EPS filled syntactic foams prepared by VARTM. J. Comp. Part B. 2018; https://doi. org/10.1016/j.compositesb. 2017.07.053.
  2. Entfellner M, Hamdi P,Wang X,Wannenmacher H,Amann F. Investigating High-Strength Expanded Polystyrene (HS-EPS) as yielding support elements for tunnelling in squeezing ground conditions. J. Tunn. and Under. Space Techn. 2021; https://doi.org/10.1016/j. tust. 2021.104186.
  3. Vaitkus S, Granev V, Gnip I, Vėjelis S, Kairytė A. Stress Relaxation in Expanded Polystyrene (EPS) Under Uniaxial Loading Conditions. J. Proce. Engine. 2013; https://doi.org/10.1016/j. proeng. 2013.04.153.
  4. Leo ChJ, Kumruzzaman M, Wong H, Yin JH. Behavior of EPS geofoam in true triaxial compression tests. J. Geot. and Geom. 2008; https://doi.org/10.1016/j.geotexmem.2007.10.005.
  5. Tang N, Lei D, Huang D, Xiao R. Mechanical performance of polystyrene foam (EPS): Experimental and numerical analysis. J. Poly. Test. 2019; https://doi.org/10.1016/j. polymertesting. 2018.12.001.
  6.  BejuYZ,Mandal JN. Expanded polystyrene (EPS) geofoam: preliminary characteristic evaluation. J. Proce. Engine. 2017; https://doi. org/10.1016/j.proeng.2017.05.038.
  7. Hazarika H. Stress-strain modeling of EPS geofoam for large-strain applications. J. Geot. and Geom. 2006; https://doi.org/10.1016/j.geotexmem. 2005.11.003.
  8. EN 13163:2012+A1:2015 Thermal insulation products for buildings – Factory made expanded polystyrene (EPS) products – Specification.
  9. EN 826:2013 Thermal insulating products for building applications – Determination of compression behaviour.
  10. EN 13163:2012 Thermal insulation products for buildings – Factorymade expanded polystyrene (EPS) products – Specification.
  11. EN 13163:2001 Thermal insulation products for buildings – Factorymade expanded polystyrene (EPS) products – Specification.
  12. EN 13163:2008 Thermal insulation products for buildings – Factorymade expanded polystyrene (EPS) products – Specification.
  13. EN 13163: 2012+A2:2016 Thermal insulation products for buildings – Factory made expanded polystyrene (EPS) products – Specification.
  14. EN 826:1986 Thermal insulating products for building applications – Determination of compression behaviour.
  15. ISO/DIS 29469:2021 Thermal insulating products for building applications – Determination of compression behaviour.
  16. Strzałkowski A, Śliżyński A. Matematyczne metody opracowywania wyników pomiarów. PWN, Warszawa 1978.
dr hab. inż. Jacek Domski, prof. PK, Politechnika Koszalińska, Wydział Inżynierii Lądowej, Środowiska i Geodezji ORCID: 0000-0002-5112-1035 mgr inż. Irena Domska, Fabryka Styropianu ARBET Sp.J. ORCID: 0000-0002-8508-5749

dr hab. inż. Jacek Domski, prof. PK, Politechnika Koszalińska, Wydział Inżynierii Lądowej, Środowiska i Geodezji ORCID: 0000-0002-5112-1035

 jacek.domski@tu.koszalin.pl

Full paper:

DOI: 10.15199/33.2022.12.30

Article in PDF file