Buffer zone modelling in a single family house


Vol. 522 (2) 2016 / czwartek, 25 października, 2018

(in Polish)

Weronika Lechowska,
Krzysztof Cebrat

DOI: 10.15199/33.2016.02.06


Volume 522; Issue 2
Pages 20-23
Accepted for publication: 14.09.2015 r.

 

Buffer zones, due to reduced temperature fluctuations on both sides of partitions, should reduce heat loss during the heating season and provide better protection against overheating in summer. However, their operation depends on many factors – weather, size and location of the zone, partition airtightness and glazing proportions. The research on buffer zones and justness of their use in Polish climate, presented in this article, consists of the computer model calibration, which aimed to achieve similar simulated temperatures to themeasured values in particular zones. The existing building, in which measurements were conducted, is a single-family house with a wooden frame construction. It has several buffer zones: sunspace, unheated attic and garage. The results show the actual heat gains obtained through the buffer zone. Temperature measurements inside and outside the building also enabled determining the direction of heat flow through the sunspace.The long-range scope of the research, which fragment is described in this article, is to check the relationship between parameters of the buffer zone and energy demand of a single family house. These studies are a continuation of analyses of the Double Skin House concept, which is an example of the use of the double façade as a buffer zone.
  1. Heim D. [red.], Fizyka budowli – optymalizacja. Optymalizacja fasad podwójnych pod kątem oszczędności energii i jakości środowiska wewnętrznego, Politechnika Łódzka, Katedra Procesów Cieplnych i Dyfuzyjnych, Łódź 2013.
  2. Chwieduk D., Bogdańska B.: Some recommendations for inclinations and orientations of building elements under solar radiation in Polish conditions, Renewable Energy 29 (2004) 1569 – 1581.
  3. Najder M., Kurtz-Orecka K.: Wpływ orientacji i lokalizacji budynku niskoenergetycznego na zmianę zapotrzebowania energii, Kierunki rozwoju budownictwa energooszczędnego i wykorzystania odnawialnych źródeł energii na terenie Dolnego Śląska, pod red. Anny Bać i Jacka Kasperskiego, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2013, str. 91 – 100.
  4. Rempel A. R., Rempel A. W., Cashman K. V., Gates K. N., Page C. J., Shaw B.: Interpretation of passive solar field data with EnergyPlus models: Un-conventional wisdom from four sunspaces in Eugene, Oregon, Building and Environment 60 (2013) 158 – 172.
  5. Bać A., Cebrat K., Nowak Ł.: Podwójna przegroda w zrównoważonym domu blisko zeroenergetycznym. 2014. Materiały Budowlane 1/2014 (437) str. 22 – 23.
  6. Nowak Ł., Cebrat K., Bać A.: Double skin house concept – a study of bufferzoneusage in a single family house. 2014. Technical Transactions. B, Civil Engineering. 2014, R. 111, z. 8, 3-B, s. 353 – 361.
  7. PN ISO 13789:2008P, Cieplne właściwości użytkowe budynków. Współczynniki przenoszenia ciepła przez przenikanie i wentylację.Metoda obliczania.
  8. Brown G. Z., De Kay M.: Sun, wind, light.Architectural design strategies. JohnWiley & Sons. New York 2001.
  9. Hegger M., Fuchs M., Stark T., Zeumer M.: Energymanual. Sustainable architecture. Birkhauser 2008.
  10. Pfundstein M., Gellert R., Spitzner M.H., Rudolphi A.: Insulating materials. Principles, materials, applications. Birkhauser, Edition Detail 2007.
  11. www.encyclo-ecolo.com/Energie_grise. Dostęp 01.04.2015.
  12. www.ecocem.ie/downloads/Inventory_of_Carbon _and_Energy.pdf. Dostęp 01.04.2015.
  • Weronika Lechowska, MSc., Eng. Arch. - Wroclaw University of Technology, Faculty of Architecture
  • Krzysztof Cebrat, Ph. D., Eng. Arch. - Wroclaw University of Technology, Faculty of Architecture
  • Krzysztof Cebrat, Ph. D., Eng. Arch.

    krzysztof.cebrat@pwr.edu.pl