Assessment of the environmental loads in the life cycle of a building


openaccess, Vol. 596 (4) 2022 / czwartek, 28 kwietnia, 2022

(Open Access)

DOI: 10.15199/33.2022.04.17

Tomporowski Daniel, Kasner Robert. 2022. Assessment of the environmental loads in the life cycle of a building. Volume 596. Issue 4. Pages 99-101. Article in PDF file

Accepted for publication: 04.04.2022 r.

The continuous price increase of energy raw material, as well as the growing requirements regarding the emission and energy consumption of buildings, force us to look for new solutions, starting from obtaining raw materials, producing (constructing), exploitation and consequently managing energy and rawmaterials in accordancewith the assumptions of a circular and sustainable economy development. The goal of the study was a detailed analysis of the energy and environmental loads in the life cycle of an existing commercial building. This scientific analytical procedure was performed using the Life Cycle Assessment (LCA) method. The results of the analysis show the dominant influence of the exploitation phase on the environment. Particularly in this area further measures should be taken to improve the energy efficiency and consequently the emissivity of buildings.
  1. Singh R, Kumar S. Green Technologies and Environmental Sustainability. Cham, Switzerland: Springer International Publishing; 2017.
  2. McLellan B. Sustainable Future for Human Security. Singapore: Springer Nature Singapore; 2018.
  3.  Flizikowski J, Bielinski K. Technology and Energy Sources Monitoring: Control, Efficiency, and Optimization. USA: IGI Global; 2012.
  4.  Yang M, Yu X. Energy Efficiency: Benefits for Environment and Society. London: Springer; 2015.
  5. Sasmal J. Resources, Technology and Sustainability. Singapore: Springer; 2016.
  6.  Ekardt F. Sustainability: Transformation, Governance, Ethics, Law. Cham: Springer International Publishing; 2020.
  7.  Frankl P, Rubik F. Life CycleAssessment in Industry andBusiness;Berlin,Heidelberg: Springer; 2000.
  8.  Piotrowska K, Piasecka I. Specification of Environmental Consequences of the Life Cycle of Selected Post-ProductionWaste ofWind Power Plants Blades.Materials. 2021; doi: 10.3390/ma14174975.
  9. GraczykM, Rybaczewska-BłażejowskaM. Continual Improvement as a Pillar of EnvironmentalManagement. Management. 2010; 1: 297 – 305.
  10. Górzyński J. Podstawy analizy środowiskowejwyrobówiobiektów. Warszawa:WydawnictwoWNT;2007.
  11.  ISO14044:2006EnvironmentalManagement–Life CycleAssessment – Requirements and Guidelines.
  12. ISO 14040: 2006 Environmental Management – LifeCycleAssessment – Principles and Framework.
  13. Guinée J. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards. Netherlands: Springer; 2002.
  14.  Kurczewski P, Kłos Z. Technical Objects Classification for EnvironmentalAnalyses. Zagadnienia Eksploat. Masz. 2005: 40: 127 – 138.
  15.  TomporowskiA, Flizikowski J,KruszelnickaW, Piasecka I,KasnerR,MrozińskiA,Kovalyshyn S.Destructiveness of Profits and Outlays Associated with Operation of Offshore Wind Electric Power Plant. Part 1: Identification of aModel and Its Components. Pol.Marit.Res. 2018; doi: 10.2478/pomr-2018-0064.
  16.  Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R. IMPACT 2002+: A New Life Cycle Impact AssessmentMethodology. Int. J. Life CycleAssess. 2003; doi: 10.1007/BF02978505.
  17.  BauerM,Mösle P, SchwarzM. Green Building; BerlinHeidelberg: SpringerBerlin,Heidelberg; 2010.
  18.  Motoasca E, Agarwal AK, Breesch H. Energy Sustainability in Built and Urban Environments. Singapore: Springer Singapore; 2019.
  19.  Plastrik P, Cleveland J. LifeAfter Carbon. The Next Global Transformation of Cities.Washington, USA: Island Press; 2018.
  20.  Oladokun MG, Aigbavboa CO. Simulation- -Based Analysis of Energy and Carbon Emissions in the Housing Sector. Cham: Springer International Publishing; 2018.
  21. Yang F, Chen L. High-Rise Urban Form andMicroclimate: Climate-ResponsiveDesign forAsianMega- Cities. Singapore: Springer Singapore; 2020.
  22.  Mercader-Moyano P. Sustainable Development andRenovation inArchitecture,UrbanismandEngineering. Cham: Springer International Publishing; 2017.
  23.  DrückH,PillaiRG,TharianMG,MajeedAZ.GreenBuildings andSustainableEngineering:Proceedings of GBSE 2018. Singapore: Springer Singapore; 2019.
  24.  Recchia L, Boncinelli P, Cini E, Vieri M, Pegna FG, Sarri D. MulticriteriaAnalysis and LCATechniques: With Applications to Agro-Engineering Problems. London-New York: Springer; 2011.
  25.  TomporowskiA, Piasecka I, Flizikowski J, Kasner R, KruszelnickaW, Mroziński A, Bieliński K. ComparisonAnalysis of Blade Life Cycles of Land- -Based and Offshore Wind Power Plants. Pol. Marit. Res. 2018; doi: 10.2478/pomr-2018-0046.
  26.  Piasecka I, Bałdowska-Witos P, Piotrowska K, Tomporowski A. Eco-Energetical Life Cycle Assessment ofMaterials andComponents ofPhotovoltaicPower Plant. Energies. 2020; doi: 10.3390/en13061385.
  27.  Littlewood J,Howlett RJ, CapozzoliA, Jain LC. Sustainability in Energy and Buildings: Proceedings of SEB 2019. Singapore: Springer Singapore; 2020.
mgr inż. Daniel Tomporowski, Politechnika Gdańska; Wydział Inżynierii Lądowej i Środowiska ORCID: 0000-0001-5641-6062
dr inż. Robert Kasner, Politechnika Bydgoska; Wydział Inżynierii Mechanicznej ORCID: 0000-0001-6866-4741

mgr inż. Daniel Tomporowski, Politechnika Gdańska; Wydział Inżynierii Lądowej i Środowiska ORCID: 0000-0001-5641-6062

daniel.tomporowski@pg.edu.pl

Full paper:

DOI: 10.15199/33.2022.04.17

Article in PDF file