Cycles of building tasks realization and required time buffers


Vol. 554 (10) 2018 / środa, 31 października, 2018

(InPolish)

A. Więckowski

DOI: 10.15199/33.2018.10.21

Volume 554: Issue 10
Pages 71-73
Accepted for publication: 29.08.2018 r.

The purpose of the article is to determine the scale of impacts of random durations of works on the change of cycles of implementation of entire tasks in the case of the use of the flow method (steady). The impact on timely execution of randomtasks of duration of individual works was analyzed. Using the probability calculus and numerical analysis methods, including Monte Carlo, cycles of task completion were examined. Network models of activities with determined structure and random times of processeswere used. In the example, in the case of large spreads in the execution times of individual processes (the relative standard deviation in the tested structure was as much as δσ = 41.2%), among others extending the task execution cycle by more than 11% compared to the result according to the classical model. Relative to the time of the expected execution of the EX process, the average downtime of one plot is more than 3 times greater. The averagewaiting period for a brigade per plot is approximately 0.2 working shift and constitutes 6.29% of the EX value. Keywords: evenly work; task cycles; modeling.
  1. Belniak Stanisław (red.). 2015. Zastosowanie metod matematycznych w wybranych problemach zarządzania w budownictwie. Kraków.Wydawnictwo Politechniki Krakowskiej.
  2. Cho C.,Y. Shin, J. Park,Y. Lee,M. Cho. 2012. „Lifting load calculation method of computing simulation for super-tall building construction”. The 29th International Symposium of Automation and Robotics in Construction. Eindhoven.
  3. DyżewskiAleksander. 1949. Doktryna pracy równomiernej w realizacji budowlanej. Warszawa. PWG.
  4. ISO10005:2005.Qualitymanagement systems –Guidelines for quality plans.
  5. Jaworski Kazimierz. 2009. Metodologia projektowania realizacji budowy. Warszawa. Wydawnictwo Naukowe PWN.
  6. Kurihara Kenzo, Nobuyuki Nishiuchi. 2002. „Efficient Monte Carlo simulation method of GERT-type network for project management”. Computers & Industrial Engineering. V. 42, I. 2–4: 521 – 531.
  7. Mrozowicz Juliusz. 1982. Metody potokowe organizacji procesów budowlanych o charakterze deterministycznym. Prace Naukowe Instytutu Budownictwa PWr, nr 32, Monografie, nr 14. Wrocław. Wydawnictwo PWr.
  8. PritchardCarl.2010.RiskManagement:ConceptsandGuidance.FourthEdition.ESI.
  9. ShtubAvraham, Jonathan F. Bard, Shlomo Globerson. 1994. ProjectManagement. Engineering, Technology and Implementation. Englewood Cliffs. New Jersey. Prentice Hall.
  10. Wątorski Jan. 1965. Organizacja i mechanizacja budowy, Cz. III. Kraków- -Warszawa-Łódź. PWN.
  11. Więckowski Andrzej. 2002. „Principles of the NNM method applied in the analysis of process realisation”. Automation in Construction. Vol. 11/4: 409 – 420.
  12. Więckowski Andrzej. 2017. „Influence, of time randomness execution of work, on lenght of cycle”. Technical Transactions (3): 63 – 72.
  13. www.opolskabusinesspark.pl (dostęp: 10.08.2017 r.).
dr hab. inż. Andrzej Więckowski, prof. AGH, Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie;Wydział Górnictwa i Geoinżynierii;

dr hab. inż. Andrzej Więckowski

awiecko@agh.edu.pl

Full paper is available at Publisher house SIGMA-NOT Sp. z o.o. webpage

DOI: 10.15199/33.2018.10.21