The use of 3D laser scanning for the inventory of materials in objects intended for the demolition


openaccess, Vol. 604 (12) 2022 / wtorek, 27 grudnia, 2022

(Open Access)

DOI: 10.15199/33.2022.12.13

Ulewicz Małgorzata, A. Pawłowicz Joanna. 2022. The use of 3D laser scanning for the inventory of materials in objects intended for the demolition. Volume 604. Issue 12. Pages 50-52. Article in PDF file

Accepted for publication: 21.10.2022 r.

Performing a proper inventory of materials in construction objects intended for demolition, taking into account the ease of their recovery, is a time-consuming and costly process. This paper shows that this process can be improved by using 3D laser scanning technology, which is successfully used in the preparation of inventory documentation of historic buildings and in many other areas of the economy. The 3D laser scanning technology can be used in the future to measure the volume (cubic capacity) of building objects and to identify basic demolition materials for recycling.
  1. https://ec.europa.eu/eurostat/statisticsexplained/index.php/Waste_statistics# Total_waste _generation.
  2. Ulewicz M. Gospodarka odpadami budowlanymi i rozbiórkowymi w europejskiej strategii zrównoważonego rozwoju – stan i perspektywa, Przegląd Budowlany. 2021, 10: 49 – 53.
  3. Almukhtar A, Saeed ZO, Abanda H, Tah JHM. Reality capture of buildings using 3D laser scanners. Civil. Eng. 2021; 2: 214 – 235, doi. org/10.3390/civileng2010012.
  4. Borodinecs A, Zemitis J, Dobelis M, Kalinka M. 3D scanning data use for modular building renovation based on BIM model, MATEC Web of Conferences. 2018; DOI: 10.1051/matecconf/201825103004.
  5. Pawłowicz JA. Pomiary uszkodzeń budynku na podstawie trójwymiarowych danych ze skaningu laserowego.Builder. 2020;DOI: 10.5604/01.3001.0014.1447.
  6. Łukaszewski Ł. Application of scanning measurements to document the behavior states of various engineering and building construction compounds, Civil Engeenering. 2016; DOI: 10.4467/2353737XCT. 16.059.5408.
  7. Javaid M, Haleem A, Singh RP, Suman R. Industrial perspectives of 3D scanning: Features, roles and it’s analytical applications. Sensors International 2. 2021; doi.org/10.1016/j. sintl. 2021.100114.
  8. Karagianni A. Terrestrial laser scanning in building documentation, Civil Engineering and Architecture. 2017; DOI: 10.13189/cea. 2017.050603.
  9.  Wei Y, Pushkar A, Akinci B. Supporting deconstruction waste management through 3D Imaging: A case study, 36th International Symposium on Automation and Robotics in Construction (ISARC 2019), 438 – 445.
  10. Angheluta LM, Radvan R. 3D Digitization of translucid materials in Cultural Heritage objects: a comparative study between laser scanning and photogrammetry, Romanian Journal of Physics. 2020, 65, 906.
  11.  Pawłowicz JA. Wpływ cech fizycznych różnych materiałów na jakość danych uzyskanych ze skaningu laserowego 3D. Materiały Budowlane. 2016, 12: 76 – 77.
dr hab. Małgorzata Ulewicz, prof. PCz, Politechnika Częstochowska, Wydział Budownictwa ORCID: 0000-0001-8766-8393
dr inż. Joanna A. Pawłowicz, Uniwersytet Warmińsko - Mazurski w Olsztynie, Wydział Geoinżynierii ORCID: 0000-0002-1334-5361

dr hab. Małgorzata Ulewicz, prof. PCz, Politechnika Częstochowska, Wydział Budownictwa ORCID: 0000-0001-8766-8393

malgorzata.ulewicz@pcz.pl

Full paper:

DOI: 10.15199/33.2022.12.13

Article in PDF file