Influence of metakaolin addition on autogenous and total shrinkage of cement matrix materials


openaccess, Vol. 604 (12) 2022 / wtorek, 27 grudnia, 2022

(Open Access)

DOI: 10.15199/33.2022.12.33

Zieliński Adam, Wolka Paweł, Żebrowski Wojciech. 2022. Influence of metakaolin addition on autogenous and total shrinkage of cement matrix materials. Volume 604. Issue 12. Pages 125-130. Article in PDF file

Accepted for publication: 23.11.2022 r.

The paper presents the results of research on the use of metakaolin as a supplementary material in the composition of the cement binder in order to improve the performance properties of cement composites. Cement with metakaolin replacement were used in the research in amount of: 10 and 25% by weight of cement with a constant water-binder ratio. The properties of cement materials were assessed by testing the consistency using the flow tablemethod;measuring the compressive and flexural strength during 2, 7 and 28 days of maturation, testing total shrinkage using Graf-Kaufmanmethod and research of autogenous shrinkagewith laser deformation measurement. The automatic measurement of shrinkage was carried out for 28 days. Results showed that increase in content of metakaolin in composition of cement binder decreased total shrinkage, while it increased autogenous shrinkage. The use of metakaolin slowed down the initial dynamics of developmentof mechanical properties, while after 28 days of maturation, an increase in strength parameters of tested cement mortars with additive was observed.
  1. Kurdowski W. Chemia cementu i betonu. Warszawa: PWN. 2010.
  2. Termkhajornkit P, Nawa T, Nakai M, Saito T. Effect of fly ash on autogenous shrinkage. Cement and Concrete Research. 2005; 35 (3): 473 – 82.
  3. Nath P, Sarker P. Effect of FlyAsh on the Durability Properties of High Strength Concrete. Procedia Engineering. 2011;https://doi.org/10.1016/j.proeng.2011.07.144.
  4. Tazawa E-i, Miyazawa S. Influence of cement and admixture on autogenous shrinkage of cement paste. Cement and Concrete Research. 1995; https://doi. org/10.1016/0008-8846 (95) 00010-0.
  5. Güneyisi E, Gesoğlu M, Karaolu S, Mermerdaş K. Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Construction and Building Materials. 2012; https://doi.org/10.1016/j. conbuildmat. 2012.02.017.
  6. Yuan, Jiqiu, et al. Effect of Slag Cement on Drying Shrinkage of Concrete. ACI Materials Journal. 2015; 112 (2): 267+.
  7. Skibicki S, Kaszyńska M, Federowicz K, TechmanM, ZielińskiA, Olczyk N,Wróblewski T, Hoffmann M. Druk 3D kompozytów betonowych metodą przyrostową – doświadczenia zespołu szczecińskiego. Inżynieria iBudownictwo. 2021 (7): 328 – 33.
  8.  Brooks JJ, Megat Johari MA. Effect of metakaolin on creep and shrinkage of concrete. Cement and Concrete Composites. 2001; https://doi. org/10.1016/S0958-9465 (00) 00095-0.
  9. Ambroise J, MuratM, Pera J. Hydrationreactionandhardening of calcined clays and related minerals. IV. Experimental conditions for strength improvement onmetakaoliniteminicylinders. Cement and Concrete Research. 1985; https://doi. org/10.1016/0008-8846 (85) 90011-0.
  10.  Güneyisi E, Gesoğlu M, Mermerdaş K. Improving strength, drying shrinkage, and pore structure of concrete usingmetakaolin.Mater Struct. 2008; https://doi. org/10.1617/s11527-007-9296-z.
  11. Wild S,Khatib JM, JonesA.Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cement and Concrete Research. 1996; https://doi.org/10.1016/0008-8846 (96) 00148-2.
  12.  Kapeluszna E, Szudek W, Wolka P, Zieliński A. Implementation of Alternative Mineral Additives in Low-Emission Sustainable Cement Composites.Materials 2021; https://doi.org/10.3390/ma14216423.
  13. Poon CS,Kou SC, LamL. Compressive strength, chloride diffusivity and pore structure of high performancemetakaolin and silica fume concrete. Construction and Building Materials. 2006; https://doi. org/10.1016/j.conbuildmat. 2005.07.001.
  14.  Konkol J. Struktura i właściwości kompozytów cementowych modyfikowanych metakaolinitem. Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej. 2016.
  15.  Gartner E. Industrially interesting approaches to „low-CO2” cements. Cement and Concrete Research. 2004;https://doi.org/10.1016/j.cemconres.2004.01.021.
  16. PN-EN1008:2004. Specyfikacja pobierania próbek, badanie i ocena przydatności wody zarobowej do betonu, w tym wody odzyskanej z procesów produkcji betonu.
  17.  PN-EN 196-1:2016-07. Metody badania cementu – Część 1: Oznaczanie wytrzymałości.
  18.  PN-EN 1015-3:2000. Metody badań zapraw do murów – Określenie konsystencji świeżej zaprawy (za pomocą stolika rozpływu).
  19. PN-EN 12808-4:010. Zaprawy do spoinowania płytek – Część 4: Oznaczanie skurczu.
  20.  PN-EN 196-3:2016-12. Metody badania cementu – Część 3: Oznaczanie czasów wiązania i stałości objętości.
  21. Sant G, Dehadrai M, Bentz D, Lura P, Ferraris C, Bullard J, Weiss J. Detecting the Fluid-to-Solid Transition in Cement Pastes: ACI Committee 236.
  22.  Tazawa E. Japanese Concrete Institute Committee Report. Technical committee on autogenous shrinkage of concrete section 4 testing methods. Autoshrink 98.
dr inż. Adam Zieliński, Zachodniopomorski Uniwersytet Technologiczny, Wydział Budownictwa i Inżynierii Środowiska ORCID: 0000-0001-7949-1831
dr inż. Paweł Wolka, ASTRA Technologia Betonu Sp. z o.o. ORCID: 0000-0001-7921-720X
dr inż. Wojciech Żebrowski, ASTRA Technologia Betonu Sp. z o.o. ORCID: 0000-0003-1759-4688

dr inż. Adam Zieliński, Zachodniopomorski Uniwersytet Technologiczny, Wydział Budownictwa i Inżynierii Środowiska ORCID: 0000-0001-7949-1831

adam.zielinski@zut.edu.pl

Full paper:

DOI: 10.15199/33.2022.12.33

Article in PDF file