Combustible facade – problem analysis and comparison of fire testing methods


openaccess, Vol. 619 (3) 2024 / wtorek, 26 marca, 2024

(Open Access)

DOI: 10.15199/33.2024.03.11

Brzezińska Dorota, Brzezińska Maria. 2024. Combustible facade – problem analysis and comparison of fire testing methods. Volume 619. Issue 3. Pages 50-55. Article in PDF file

Accepted for publication: 10.01.2024 r.

The following article describes an example of a fire in Grenfell Tower in London against the background of statistics of fires on façades in buildings over the last 60 years, compares and evaluates currently used cladding materials and methods of conducting their fire tests, and presents the latest changes in British fire regulations.The aim of the article wass to show the importance of the problem that may arise when using flammable facade cladding on high-rise buildings and the differences in the conditions for conducting fire tests in Poland according to available standards.
  1. Bonner M, Rein G. Flammability andmulti-objective performance of building façades: Towards optimum design. Int. J. High-Rise Build. 2018; DOI: 10.21022/IJHRB.2018.7.4.363.
  2. Yuen ACT et al. Evaluating the fire risk associated with cladding panels: An overview of fire incidents, policies, and future perspective in fire standards. Fire Mater. 2021; DOI: 10.1002/fam.2973.
  3. Semenov V, Kozlov S, ZhukovA, Ter-Zakaryan K, Zinovieva E, Fomina E. Insulation systems for buildings and structures based on expanded polyethylene. MATECWeb Conf. 2018, DOI: 10.1051/matecconf/201825101014.
  4.  Han-Hsi L, Ming-Chin H. Toxicity characteristics of commercially manufactured insulation materials for building applications in Taiwan. Constr. Build. Mater. 2007; 21(6): 1254 – 1261.
  5. Guillaume E, Dréan V, Girardin B, Benameur F, Koohkan M, Fateh T. Reconstruction of Grenfell Tower fire. Part 3 – Numerical simulation of the Grenfell Tower disaster: Contribution to the understanding of the fire propagation and behaviour during the vertical fire spread. Fire Mater. 2020; DOI: 10.1002/fam.2763.
  6. Zhou L, Chen A, Liu X, Zhang F. The Effectiveness of Horizontal Barriers in Preventing Fire Spread on Vertical Insulation Panels Made of Polystyrene Foams. Fire Technol. 2016; DOI: 10.1007/s10694-015-0478-x.
  7. Kiejna K. Bezpieczeństwo pożarowe w aspekcie stosowania tzw. barier ogniowych w ociepleniach ze styropianu – artykuł polemiczny. Izolacje, vol. 2, no. 2/2021, 2021, [Online]. Available: https://www. izolacje. com. pl/artykul/ sciany-stropy/251967, bezpieczenstwo-pozarowe-w-aspekcie-stosowania- tzw-barier-ogniowych-w-ociepleniach-ze-styropianu-artykul-polemiczny.
  8.  Stowarzyszenie Inżynierów i Techników Pożarnictwa SITP, Wytyczne SITPWP-03:2018 ocieplenia elewacji budynków z uwagi na bezpieczeństwo pożarowe. 2018.
  9.  Rockwool, Poprawa bezpieczeństwa pożarowego elewacji ETICS ze styropianem. 2018.
  10.  Bagiński K, Hyjek M. Bezpieczeństwo pożarowe ścian i fasad. 2020.
  11.  Frangi A, Schleifer V, Hugi E. A New Fire Resistant Light Mineral Wool. Fire Technol. 2012; DOI: 10.1007/s10694-010-0209-2.
  12.  Koohkan M, Dréan V, Girardin B, Guillaume E, Fateh T, Duponche X. Reconstruction of the Grenfell Tower Fire – ThermomechanicalAnalysis of Window Failure During the Grenfell Tower Disaster. Fire Technol. 2021; DOI: 10.1007/s10694-020-00980-4.
  13.  Guillaume E, DréanV, Girardin B, Fateh T. Reconstruction of the Grenfell Tower fire – Part 4: Contribution to the understanding of fire propagation and behaviour during horizontal fire spread. Fire Mater. 2020; DOI: 10.1002/fam.2911.
  14. Profinish fire Protection. What Fire Safety Laws Were Changed As A Result Of The Grenfell Fire? 2023. https://www.profinishfire.com. au/what-fire-safety-laws-were-changed-as-a-result-of-the-grenfell-fire/.
  15.  Guillaumev E, Dréan V, Girardin B, Benameur F, Fateh T. Reconstruction of Grenfell Tower fire. Part 1: Lessons from observations and determination of work hypotheses. Fire Mater. 2020; DOI: 10.1002/fam.2766.
  16. Guillaume E, Dréan V, Girardin B, Koohkan M, Fateh T. Reconstruction of Grenfell Tower fire. Part 2:Anumerical investigation of the fire propagation and behaviour from the initial apartment to the façade. Fire Mater. 2020; DOI: 10.1002/fam.2765.
  17. TWOJE INFO „Pożar bloku w Warszawie. Ogień objął dziesięć pięter,” 14.08.2019, 2019. https://www.tvp.info/43934888/pozar-bloku-w-warszawie- ogien-objal-dziesiec-pieter.
  18.  Grenfell Tower Inquiry „Grenfell Tower Inquiry: Phase 1 Report (Volume 4),” 2019. [Online].Available: https://www. grenfelltowerinquiry. org. uk/phase-1-report.
  19.  UK Goverment, Fire Safety (England) Regulations 2022, Published 18 May 2022. Unitet Kingdom, 2022. [Online]. Available: https://www. gov. uk/government/publications/fire-safety-england-regulations-2022.
  20.  Polski Komitet Normalizacyjny, PN-B-02867: 2013-06 Ochrona przeciwpożarowa budynków –Metoda badania stopnia rozprzestrzeniania ognia przez ściany zewnętrzne od strony zewnętrznej oraz zasady klasyfikacji. 2013, p. 20.
  21.  British Standards Institution, BS 8414-1:2020 Fire performance of external cladding systems – Test method for non-loadbearing external cladding systems fixed to, and supported by, a masonry substrate. 2020.
  22.  Hurley MJ. SFPE handbook of fire protection engineering Fifth Edition, Fifth., no. 1. NewYork: Springer US. 2016; DOI: 10.1007/978-1-4939- 2565-0.
  23.  Borkowicz K, Kasprzyk S. Ocena stopnia rozprzestrzeniania ognia przez ściany zewnętrzne w Polsce oraz w Wielkiej Brytanii. Izolacje, vol. 4, no. 4/2023, 2023, [Online]. Available: https://www. izolacje. com. pl/artykul/ sciany-stropy/276014, ocena-stopnia-rozprzestrzeniania-ognia-przez- -sciany-zewnetrzne-w-polsce-oraz-w-wielkiej-brytanii.
  24.  Borkowicz K. Badania w dużej skali wg BS 8414-1:2020 jako innowacyjne podejście do oceny bezpieczeństwa pożarowego w polskich realiach,” Mater. Bud., vol. 11, no. 11/2020, p. 2, 2020, [Online]. Available: https://www.materialybudowlane.info.pl/images/2021/01/s30-32. pdf.
  25.  Mc Grattan K, Hostikka S, McDermott R, Floyd J, Vanella M. Fire Dynamics Simulator User’s Guide. NIST Spec. Publ. 1019 Sixth Ed., p. 347, 2019, [Online]. Available: https://nvlpubs.nist.gov/nistpubs/Legacy/ SP/nistspecialpublication1019.pdf.
  26.  McGrattan K, Hostikka S, McDermott, Floyd RJ, Weinschenk C, Overhold K. Sixth Edition Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical Model. Natl. Insitute Stand. Technol. 2019; 1: 201.
  27. Reidar S, Tian L, Trond W, Anne S-H. 14th International Symposium on Fire Safe Safety Science, Tsukuba, Japan October 22-27,2023, in Large Scale fire test of a building integrated photovoltaic facade systems, 2023.
  28. Nguyen HT, Abu-Zidan Y, Zhang G, Nguyen KTQ. Machine learning- -based surrogate model for calibrating fire source properties in FDS models of façade fire tests. Fire Saf. J., vol. 130, no. December 2021, 2022, DOI: 10.1016/j.firesaf.2022.103591.
  29.  Robbins AP,Wade CA. Soot Yield Values for Modelling Purposes – Residential Occupancies. 2008; 185: 147.
  30.  NFPA, NFPA 204. Standard for Smoke and Heat Venting. 2021.
dr hab. inż. Dorota Brzezińska, prof. PŁ, Politechnika Łódzka, Wydział Inżynierii Procesowej i Ochrony Środowiska ORCID: 0000-0003-4615-4454
Maria Brzezińska, Politechnika Łódzka, Wydział Budownictwa, Architektury i Inżynierii Środowiska ORCID: 0000-0002-9095-817X

dr hab. inż. Dorota Brzezińska, prof. PŁ, Politechnika Łódzka, Wydział Inżynierii Procesowej i Ochrony Środowiska ORCID: 0000-0003-4615-4454

 dorota.brzezinska@p.lodz.pl

Full paper:

DOI: 10.15199/33.2024.03.11

Article in PDF file