Carbon footprint of a sports hall building – discrepancies between reference buildings and the actual


openaccess, Vol. 625 (9) 2024 / czwartek, 26 września, 2024

Emisja śladu węglowego budynku hali sportowej – rozbieżności pomiędzy budynkami referencyjnym a rzeczywistym

(Open Access)

DOI: 10.15199/33.2024.09.08

citation/cytuj: Zima K., Grącka A. Carbon footprint of a sports hall building – discrepancies between reference buildings and the actual. Materiały Budowlane. 2024. Volume 625. Issue 9. Pages 50-57. DOI: 10.15199/33.2024.09.08

The aim of the article is to analyze changes in the global warming potential coefficient depending on design solutions during the building's life cycle. Replacing silicate blocks insulated with mineral wool with sandwich panels reduced CO2e/m2 emissions by 14% compared to the base model. The model taking into account actual material transport distances showed the lowest emission reduction. The article emphasizes the need to use ecological building materials and the differences depending on the advancement of the project.

W artykule zaprezentowano analizę zmian współczynnika potencjału globalnego ocieplenia w zależności od rozwiązań projektowych w cyklu życia budynku. Zamiana silikatowych bloczków docieplonych wełną mineralną na płyty warstwowe zmniejszyła emisję CO2e/m2 o 14% w porównaniu z modelem bazowym. Model uwzględniający rzeczywiste odległości transportu materiałów wykazał najmniejszą redukcję emisji. W artykule podkreślono konieczność stosowania ekologicznych materiałów budowlanych i różnice zależne od zaawansowania projektu.
greenhouse gases; carbon footprint of materials; building carbon footprint; building life cycle.

gazy cieplarniane; ślad węglowy materiałów; ślad węglowy budynku; cykl życia budynku
  1. Najjar M, Figueiredo K, Palumbo M, Hadda A. Integration of BIM and LCA: Evaluating the environmental impacts of building materials at an early stage of designing a typical office building, Journal of Building Engineering. 2017; https://doi. org/10.1016/j. jobe. 2017.10.005.
  2. Fenner AE, Kibert ChJ, Woo J, Morque S, Razkenari M, Hakim H, X Lu. The carbon footprint of buildings: A review of methodologies and applications, Renewable and Sustainable Energy Reviews. 2018; https://doi.org/10.1016/j. rser.2018.07.012.
  3. JangM, Hong T, Ji C. Hybrid LCAmodel for assessing the embodied environmental impacts of buildings in South Korea Environmental Impact Assessment Review. 2015; http://dx.doi.org/10.1016/j.eiar.2014.09.010.
  4. Huang B, Gao X, Xu X, Song J, Geng Y, Sarkis J, Fishman T, Kua H, Nakatani J. A Life Cycle Thinking Framework to Mitigate the Environmental Impact of Building Materials, in 2020 One Earth 3. 2020; https://doi.org/10.1016/j.oneear. 2020.10.010.
  5. Tažiková A, Struková Z. Reducing the carbon footprint by selecting building material, InternationalMultidisciplinary Scientific GeoConference: SGEM; Sofia, 2020, 4.2, 227 – 234, https://doi.org/10.5593/sgem2020V/ 4.2/s06.28.
  6. Chau, CK, Leung TM, Ng WY. A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. Applied Energy 2015; http://dx.doi.org/10.1016/j.apenergy. 2015.01.023.
  7.  Ya HD, Yang T, Liu P, Xu Z. Comparing the Standards of Life Cycle CarbonAssessment of Buildings:AnAnalysis of the Pros and Cons, Buildings. 2023; https://doi.org/10.3390/buildings13102417.
  8. Zujian H, Zhou H, Miao Z, Tang H, Lin B, Zhuang W. Life-Cycle Carbon Emissions (LCCE) of Buildings: Implications, Calculations, and Reductions, Engineering. 2024; https://doi. org/10.1016/j. eng. 2023.08.019.
  9. Lin Z, Mueller M, Luo Ch, Yan X. Predicting whole-life carbon emissions for buildings using different machine learning algorithms: A case study on typical residential properties in Cornwall, UK.,Applied Energy, 2024; https://doi. org/10.1016/j. apenergy. 2023.122472.
  10.  LiX, LiY, ZhouH, FuZ, ChengX, Zhang W. Research on the Carbon Emission Baselines for Different Types of Public Buildings in a Northern ColdAreas City of China. Buildings. 2023; https://doi.org/10.3390/buildings13051108.
  11.  Atmaca A, Atmaca N. Life cycle energy (LCEA) and carbon dioxide emissions (LCCO2A) assessment of two residential buildings in Gaziantep, Turkey; Energy and Buildings. 2015; http://dx.doi.org/10.1016/j.enbuild. 2015.06.008.
  12. Dezhi L, Peng C, Yujie L. Development of an automated estimator of life-cycle carbon emissions for residential buildings: A case study in Nanjing, China, 2016; Habitat International 57; pp. 154 – 163; https://doi.org/10.1016/j. habitatint. 2016.07.003.
  13. Eleftheriadis S, Schwartz Y, Raslan R, Duffour P, Mumovic D. Integrated Building Life Cycle Carbon and CostAnalysis Embedding Multiple Optimisation Levels.; 4th Building Simulation and Optimization Conference, Cambridge, UK: 2018.
  14.  Islam, Hamidul, Margaret Jollands, and Sujeeva Setunge. Life cycle assessment and life cycle cost implication of residential buildings –Areview. Renewable and sustainable energy reviews. 2015; DOI: 10.1016/j. rser. 2014.10.006.
  15.  Cang Y, et al. A new method for calculating the embodied carbon emissions from buildings in schematic design: Taking „building element” as basic unit. Building and Environment. 2020; https://doi. org/10.1016/j. buildenv. 2020.107306.
  16.  Ruschi M, Saade G, Guest, Amor B. Comparative whole building LCAs: How far are our expectations from the documented evidence?; Building and Environment. 2020; DOI: https://doi.org/10.1016/j.buildenv. 2019.106449.
  17.  PN-EN ISO 14040:2009 – Zarządzanie środowiskowe – Ocena cyklu życia – Zasady i struktura.
  18.  PN-EN ISO 14044:2009/A1:2018-05 – Zarządzanie środowiskowe – Ocena cyklu życia – Wymagania i wytyczne.
  19. Rozporządzenie Ministra Rozwoju i Technologii z 28.032023 r. zmieniające rozporządzenie w sprawie metodologii wyznaczania charakterystyki energetycznej budynku lub części budynku oraz świadectw charakterystyki energetycznej; Dz. U. 2023 poz. 697.
  20.  PN-EN 1990: 2004 Eurokod. Podstawy projektowania konstrukcji.
  21.  Xiaocun Z, FenglaiW. Life-cycle assessment and control measures for carbon emissions of typical buildings in China, Building and Environment. 2015; DOI: http://dx.doi.org/10.1016/j.buildenv.2015.01.003.
  22. Sri Kalyana Rama J, Shreyans S, Sridhar R. Role of lightweight materials of construction on carbon dioxide emission of a reinforced concrete building. Materials Today. 2020; https://doi.org/10.1016/j.matpr. 2020.01.294.
  23. CangY, Yang L, Luo Z&Z hang N. Prediction of embodied carbon emissions from residential buildings with different structural forms, Sustainable Cities and Society 54 2020, https://doi.org/10.1016/j. scs.2019.101946.
dr hab. inż. Krzysztof Zima, prof. PK, Politechnika Krakowska, Wydział Inżynierii Lądowej
ORCID: 0000-0001-5563-5482
mgr inż. Apolonia Grącka, Politechnika Krakowska, Wydział Inżynierii Lądowej
ORCID: 0000-0002-8535-9316

mgr inż. Apolonia Grącka, Politechnika Krakowska, Wydział Inżynierii Lądowej
ORCID: 0000-0002-8535-9316

Correspondence address: apolonia.gracka@doktorant.pk.edu.pl

Full paper:

DOI: 10.15199/33.2024.09.08

Article in PDF file

Received: 21.06.2024 / Wpłynął do redakcji: 21.06.2024 r.
Revised: 26.08.2024 / Otrzymano poprawiony po recenzjach: 26.08.2024 r.
Published: 23.09.2024 / Opublikowano: 23.09.2024 r.