Analysis of the effect of variable parameters on the shear capacity of elements reinforced with FRP bars


openaccess, Vol. 627 (11) 2024 / poniedziałek, 25 listopada, 2024

Analiza wpływu parametrów zmiennych na nośność na ścinanie elementów zbrojonych prętami FRP

(Open Access)

DOI: 10.15199/33.2024.11.02

citation/cytuj: Szczech D., Kotynia R. Analysis of the effect of variable parameters on the shear capacity of elements reinforced with FRP bars. Materiały Budowlane. 2024. Volume 627. Issue 11. Pages 10-19. DOI: 10.15199/33.2024.11.02

This paper presents an analysis of variable parameters on the shear capacity of elements reinforced with FRP bars: longitudinal reinforcement ratio; transverse reinforcement ratio; axial stiffness of reinforcement; shear slenderness; concrete compressive strength; spacing of stirrups; depth; shape of beam cross-section; inclination of transverse reinforcement and bond behaviour of stirrups.

W artykule przedstawiono analizę parametrów zmiennych na nośność na ścinanie elementów zbrojonych prętami FRP: stopnia zbrojenia podłużnego; stopnia zbrojenia poprzecznego; sztywności osiowej zbrojenia; smukłości ścinania; wytrzymałości betonu na ściskanie; rozstawu strzemion; wysokości użytecznej; kształtu przekroju poprzecznego belki; nachylenia zbrojenia poprzecznego oraz przyczepności strzemion.
shear; FRP; shear strength, variable parameters.

ścinanie; FRP; nośność na ścinanie, parametry zmienne.
  1. Szczech D, Kotynia R. Badania na ścinanie belek zbrojonych podłużnie i poprzecznie prętami FRP. Materiały Budowlane. 2024; 4: 32 ÷ 36.
  2. Zhao W, Maruyama K, Suzuki H. Shear behavior of concrete beams reinforced by FRP rods as longitudinal and shear reinforcement. RILEM. 1995.
  3. Gross SP, Dinehart DW, Yost JR, Theisz PM. Experimental tests of high- -strength concrete beams reinforced with CFRP bars. Proc. of the ACMBS, 2004.
  4.  Razaqpur AG, Isgor BO, Greenaway S, Selley A. Concrete Contribution to the Shear Resistance of Fiber Reinforced Polymer Reinforced Concrete Members. Jour. of Comp. for Constr. 2004; 8(5): 452 – 460.
  5.  Nehdi M, El Chabib H, Saïd AA. Proposed shear design equations for FRP reinforced concrete beams based on genetic algorithms approach. Jour. of Mat. in Civil Eng. 2007; 19 (12): 1033 – 1042.
  6. El-Sayed AK, El-Salakawy EF, Benmokrane B. Shear Strength of FRPReinforced Concrete Beams without Transverse Reinforcement. ACI Struct. Jour. 2006; 103 (2): 235 – 2436.
  7.  CAN/CSA-S806-12 Design and construction of building structures with fibre-reinforced polymers, Canadian Standards Association, 2012.
  8.  Tottori S, Wakui H. Shear capacity of RC and PC beams using FRP reinforcement. Special Publ. 1993; 138: 615 – 632.
  9. RaoGA,SundaresanR.SizeDependentShearStrengthOfReinforcedConcreteDeep Beams BasedOn Refined Strut-And-TieModel. Symp. 2014; 300: 1 – 26.
  10.  JSCE. Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials. 1997.
  11.  Nagasaka T, Fukuyama H, Tanigaki M. Shear performance of concrete beams reinforced with FRP stirrups. Special pub. 1993; 138: 789 – 81.
  12.  Jumaa GB, Yousif AR. Size effect on the shear failure of high-strength concrete beams reinforced with basalt FRP bars and stirrups. Constr. and Building Mat. 2019; 209: 77 – 94.
  13.  CNR-DT-203/2006 Guide for the design and construction of concrete structures reinforced with fiber-reinforced polymer bars. 2007.
  14.  ACI 440.1R-15 Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars, American Concrete Institute. 2015.
  15.  Tureyen AK, Frosch RJ. Shear tests of FRP-reinforced concrete beams without stirrups. ACI Struct. Jour. 2002; 99(4): 427 – 434.
  16.  Yang F. Deformation Behaviour of Beams Reinforced with Fibre Reinforced Polymer Bars under Bending and Shear. Diss. PhD. Sheffield, 2015.
  17.  CholostiakowS,DiBenedettiM, PilakoutasK,GuadagniniM. Effect ofBeam Depth on ShearBehaviour of FRPRCBeams. J. ofComp. forConstr. 10.1061, 2018.
  18.  Maranan G, Manalo A, Benmokrane B, Karunasena W, Mendis P, Nguyen TQ. Shear behaviour of geopolymer-concrete beams transversely reinforced with continuous rectangular GFRP composite spirals” Comp. Struct. 2018; 187.
  19.  Said M, Adam MA, Mahmoud AA, Shanour AS. Experimental and analytical shear evaluation of concrete beams reinforced with glass fiber reinforced polymers bars. Constr. and Building Mat. 2016; 102: 574 – 591.
  20.  Ahmed A, El-Salakawy EF, Benmokrane B. Performance Evaluation of Glass Fiber-Reinforced Polymer Shear Reinforcement for Concrete Beams. ACI Struc. Jour. 2010; no. 107.
  21.  Hoult N, Sherwood EG, Bentz E, Collins MP. Does the use of FRP reinforcement change the one-way shear behavior of reinforced concrete slabs? Jour. of Comp. for Constr. 2008; 12 (2): 125 – 133.
  22.  Razaqpur A, Spadea S. Resistenza a taglio di elementi di calcestruzzzo reinforzatti e staffe di FRP. Proceedings, AIAS 2010.
  23.  Alam MS, Hussein A. Size Effect on Shear Strength of FRP Reinforced Concrete Beams without Stirrups. Jour. of Comp. for Constr. 2013; 17(4): 507 – 516.
  24.  Ashour AF, Kara IF. Size effect on shear strength of FRP reinforced concrete beams. Composities Part B Eng. 2014; 60: 612 – 620.
  25. Kani GNJ. How safe are our large reinforced concrete beams?ACI Journal. 1967; 64(3): 128 – 141.
  26.  CollinsMP, Kuchma D. How safe are our large, lightly reinforced concrete beams, slabs and footings. ACI Struc. Journal 1999; 96(4): 482 – 490.
  27.  Frosch RJ. Behavior of large-scale reinforced concrete beams with minimum shear reinforcement. ACI Struc. Journal. 2000; 97(6): 814 – 820.
  28.  LubellA, Sherwood T, Bentz E, CollinsM. Safe shear design of large, wide beams. Concrete Internat. 2004; 26(1): 66 – 78.
  29. Matta F, Nanni A, Galati N, Mosele F. Size effect on shear strength of concrete beams reinforced with FRP bars. Proc. of the 6th Inter. Conf. on FraMCoS-6. 2007; 2: 17 – 22.
  30.  Bentz EC, Massam L, Collins MP. Shear strength of large concrete members with FRP reinforcement. Jour. of Comp. for Constr., 637-646. 2010.
  31. Matta F, El-Sayed AK. Nanni A, Benmokrane B. Size effect on concrete shear strength in beams reinforced with fiber-reinforced polymer bars. ACI Struc. Journal. 2013; 110(4): 617.
  32.  Ibell T, Burgoyne J. Use of Fiber-Reinforced PlasticsVersus Steel for Shear Reinforcement of Concrete. ACI Struct. Jour. 1999; V. 96, No. 6: 997 1002.
  33.  Leonhardt F, Walther R. Shear Tests on Beams With and Without Shear Reinforcement. DeutscherAusschuss für Stahlbeton. 1962; 151(151): 83.
  34.  Szczech D, Kotynia R. Shear tests on GFRP reinforced concrete beams. 10th International Conference on AMCM. MATEC Web od Conf. Vol. 323. 2020.
  35.  Szczech D, Kotynia R. Effect of shear reinforcement ratio on the shear capacity of GFRP reinforced concrete beams.Arch. of Civil Eng. 2021;Volume 67, Issue 1.
  36.  Spadea S, Orr J, Nanni A, Yang Y. Wound FRP shear reinforcement for concrete structures. Jour. of Comp. for Constr. 2017; 21(5): 4017026.
  37.  Fakharifar M, Dalvand A, Sharbatdar MK, Chen G, Sneed L. “Innovative hybrid reinforcement constituting conventional longitudinal steel and FRP stirrups for improved seismic strength and ductility of RC structures”. Frontiers of Struc. and Civil Eng. 2016; 10 (1).
  38.  Yuan Y,Wang Z. Shear behavior of large-scale concrete beams reinforced with CFRP bars and handmade strip stirrups. Comp. Struc. 2019; 227.
  39.  Demir A, Caglar N, Ozturk H, Sumer Y. Nonlinear Finite Element Study on the Improvement of Shear Capacity in Reinforced Concrete T-Section Beams by an Alternative Diagonal Shear Reinforcement. Eng.Struc. 2016; 120: 158–165.
  40. Vijay PV, Kumar SV, Ganga Rao HVS. Shear and ductility behavior of concrete beams reinforced with GFRP rebars. Proc. of the 2nd Inter. Conf. on ACMBS-II, 1996.
  41.  Shehata E, Morphy R, Rizkalla S. Fibre Reinforced Polymer Shear Reinforcement for ConcreteMembers: Behaviour and Design Guidelines. Can. Jour. of Civil Eng. 2000; 27: 859 – 872.
  42.  Kotynia R, Szczech D, Kaszubska M. Bond Behavior of GRFP Bars to Concrete in Beam Test. Proc. Eng. 2017; 193: 401 – 408.
  43.  Szczech D, Kotynia R. Beam bond test of GFRP and steel reinforcement to concrete. Arch. of Civil Eng. 2018; Vol. 64, Issue 4.
  44.  Szczech D, Kotynia R. Badania przyczepności zbrojenia niemetalicznego do betonu. Inżynier Budownictwa. 2019; 75 nr 4: 176 – 180.
  45.  Szczech D, Kotynia R. Bond analysis of GFRP and steel reinforcement to concrete. Fib 2019 Symp. – Concrete: Innovations in mat. design and struct. Kraków 2019.
dr inż. Damian Szczech, Lodz University of Technology, Department of Concrete Structures
ORCID: 0000-0002-8357-2877
prof. dr hab. inż. Renata Kotynia, Lodz University of Technology, Department of Concrete Structures
ORCID: 0000-0002-7247-1229

dr inż. Damian Szczech, Lodz University of Technology, Department of Concrete Structures
ORCID: 0000-0002-8357-2877

Correspondence address: damian.szczech@p.lodz.pl

Full paper:

DOI: 10.15199/33.2024.11.02

Article in PDF file

Received: 13.05.2024 / Artykuł wpłynął do redakcji: 13.05.2024 r.
Revised: 02.08.2024 / Otrzymano poprawiony po recenzjach: 02.08.2024 r.
Published: 25.11.2024 / Opublikowano: 25.11.2024 r.