Significance of the petrographic analysis in terms of the alkali reactivity assessment of concrete aggregates


Vol. 575 (7) 2020 / wtorek, 11 sierpnia, 2020

(InPolish)

Pabiś-Mazgaj Ewelina. 2020. Significance of the petrographic analysis in terms of the alkali reactivity assessment of concrete aggregates. Volume 575. Issue 7. Pages 2-4 . DOI: 10.15199/33.2020.07.01

Accepted for publication: 03.02.2020

Correct identification of the potentially alkali-reactive constituents is significant and also difficult step in alkalireactivity assessment of concrete aggregates. In this paper the current test method for reactivity of the domestic aggregates and significance of the petrographic analysis were discussed. Ongoing reactivity tests in Institute of Ceramics and Building Materials in Krakow are carried out in the comprehensive scope from petrographic analysis to expansion tests of mortar and concrete.
  1. AASHTO R 80-17.2001. „Determining the Reactivity of ConcreteAggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction”. American Association of State and Highway Transportation Officials, Washington.
  2. Appelquist Karin, Jan Tragardh, Mattias Goransson, Magnus Dose. 2013. „Alkali-silica reactivity of swedish aggregates used for concrete”. Alkali aggregate reactions (AAR) in concrete, Workshop Proceeding Nordic-Baltic Miniseminar 21-22 November 2013: 41 – 53.
  3. ASTM C1260, Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar- -Bar Method)
  4. ASTMC1293, Standard TestMethod for Determination of Length Change of Concrete Due to Alkali-Silica Reaction.
  5. ASTM C295, Standard Guide for Petrographic Examination of Aggregates for Concrete.
  6. BroekmansMaarten, Isabel Fernandes. 2015. „Petrographic assessment of particulatematerials: some statistical considerations”. 15th Euroseminar onMicroscopy Applied to BuildingMaterials, Delft, The Netherlands: 409 – 416;
  7. CUR Building &Infrastructure – Recommendation 89,Measures to prevent damage to concrete by alkali-silica reaction (ASR).
  8. Fernandes Isabel, Dos Anjos Riberio. 2016. „To be or not to be... Alkali Reactive. A challenge for the petrographic method”. 15th International Conference on Alkali-Aggregates Reaction, Sao-Paulo, Brazil.
  9. Fernandes Isabel, OzgeAndir-Cakir, Doug Hooton. 2016. „Assessing aggregates for alkali-aggregate reaction potential”.ConstructionMaterials 169 (3): 172 – 178. DOI: 10.1680/jcoma.15.00060
  10. Generalna Dyrekcja Dróg Krajowych i Autostrad. 2019. „Wytyczne techniczne klasyfikacji kruszyw krajowych i zapobieganie reakcji alkalicznej w betonie stosowanym w nawierzchniach dróg i drogowych obiektach inżynierskich”.
  11. Jense Viggo. 2013. „Petrographic Analysis forAssessment ofAAR in Norway; Precondition, Methods, Reliability and Experiences.Alkali aggregate reactions (AAR) in concrete, Workshop Proceeding Nordic-Baltic Miniseminar: 27 – 39.
  12. NevilleA.M. 2012.Właściwości betonuWydanie V. Kraków.Wydawnictwo Stowarzyszenie Producentów Cementu.
  13. Owsiak Zdzisława. 2015. Korozja wewnętrzna betonu. Kielce. Wydawnictwo Politechnika Świętokrzyska.
  14. PN-B-06714-46:1992, Kruszywa mineralne – Badania – Oznaczanie potencjalnej reaktywności alkalicznej metodą szybką.
  15. Rajabipour F., E. Giannini, C. Dunant, J. H. Ideker, M. D. A. Thomas. „Alkali-silica reaction: Current understanding of the reactionmechanisms and the knowledge gaps”. Cement and Concrete Research 76: 130 – 146. https://doi.org/10.1016/j. cemconres. 2015.05.024;
  16. Ramos Violetta, Isabel Fernandes, António Santos Silva, Dora Soares, Benoit Fournier, Sara Leal, Fernando Noronha. 2016. „Assessment of the potential reactivity of granitic crocks – Petrography and expansion tests”. Cement and Concrete Research 86: 63 – 77. https://doi.org/10.1016/j. cemconres.2016.05.001.
  17. RILEM Recommendations for the Prevention of Damage byAlkali-Aggregate Reactions in New Concrete Structures. 2016. State-of-the-Art Report of the RILEMTechnical Committee 219- ACS Vol. 17, Eds. Philip J. Nixon and Ian Sims. Springer Netherlands.
mgr inż. Ewelina Pabiś-Mazgaj, Sieć Badawcza Łukasiewicz – Instytut Ceramiki i Materiałów Budowlanych; Oddział Szkła i Materiałów Budowlanych w Krakowie ORCID: 0000-0003-4382-4774

mgr inż. Ewelina Pabiś-Mazgaj, Sieć Badawcza Łukasiewicz – Instytut Ceramiki i Materiałów Budowlanych; Oddział Szkła i Materiałów Budowlanych w Krakowie ORCID: 0000-0003-4382-4774

e.pabis@icimb.pl

Full paper is available at Publisher house SIGMA-NOT Sp. z o.o. webpage DOI: 10.15199/33.2020.07.01