Przegląd badań ogniowych betonowych elementów konstrukcyjnych wzmacnianych kompozytami z polimerów zbrojonych włóknami
(Open Access)
DOI: 10.15199/33.2025.12.09
citation/cytuj: Wydra M., Fangrat J. Overview of fire research on concrete structural elements strengthened with fiber-reinforced polymer composites. Materiały Budowlane. 2025. Volume 640. Issue 12. Pages 75-86. DOI: 10.15199/33.2025.12.09
- Abstract / Streszczenie
- Keywords / Słowa kluczowe
- Literature
- Afiliation
- Corresponding Author
- Open Access
Investigations on Fibre Reinforced Polymers (FRPs) at ambient temperature have already proven their effectiveness for strengthening concrete structural elements because of their high mechanical strength and durability. However, their performance at elevated and high temperatures requires proper understanding to enable safe design methods, as the FRPs and adhesives used to mount them are highly vulnerable to even remotely elevated temperatures. In addition, aspects related to the thermal conductivity and combustibility should be carefully considered. This article aims to present up-to-date research on reduced-scale and full-scale investigations on Externally Bonded or Near Surface Mounted FRP-strengthened concrete structural elements and conclusions on the directions of further research. In terms of mechanical performance, post-heated tests and simultaneous thermo-mechanical loading (at transient and steady states) were analysed.
Badania nad polimerami wzmocnionymi włóknami FRP (ang. Fiber Reinforced Polymer) w temperaturze otoczenia dowiodły ich skuteczności we wzmacnianiu elementów konstrukcyjnych ze względu na wysoką wytrzymałość i trwałość. Zachowanie ich w podwyższonej i wysokiej temperaturze wymaga jednak dodatkowej analizy w celu zapewnienia prawidłowych metod projektowania, ponieważ FRP i kleje używane do ich montażu są bardzo podatne na nawet nieznacznie podwyższoną temperaturę. Ponadto analizy wymagają kwestie związane z przewodnością cieplną i palnością. Celem artykułu jest przedstawienie aktualnego stanu wiedzy na temat badań wykonanych w pełnej lub zredukowanej skali geometrycznej, których przedmiotem są betonowe elementy konstrukcyjne, wzmacniane FRP zewnętrznie lub przypowierzchniowo oraz wnioski dotyczące kierunków dalszych badań. Przeanalizowano wyniki testów elementów po ogrzewaniu oraz poddanych jednoczesnemu obciążeniu mechanicznemu i termicznemu w stanach nieustalonym i ustalonym.
Badania nad polimerami wzmocnionymi włóknami FRP (ang. Fiber Reinforced Polymer) w temperaturze otoczenia dowiodły ich skuteczności we wzmacnianiu elementów konstrukcyjnych ze względu na wysoką wytrzymałość i trwałość. Zachowanie ich w podwyższonej i wysokiej temperaturze wymaga jednak dodatkowej analizy w celu zapewnienia prawidłowych metod projektowania, ponieważ FRP i kleje używane do ich montażu są bardzo podatne na nawet nieznacznie podwyższoną temperaturę. Ponadto analizy wymagają kwestie związane z przewodnością cieplną i palnością. Celem artykułu jest przedstawienie aktualnego stanu wiedzy na temat badań wykonanych w pełnej lub zredukowanej skali geometrycznej, których przedmiotem są betonowe elementy konstrukcyjne, wzmacniane FRP zewnętrznie lub przypowierzchniowo oraz wnioski dotyczące kierunków dalszych badań. Przeanalizowano wyniki testów elementów po ogrzewaniu oraz poddanych jednoczesnemu obciążeniu mechanicznemu i termicznemu w stanach nieustalonym i ustalonym.
concrete; construction elements; fibre reinforced polymer reinforcement; fire conditions; critical review.
beton; elementy konstrukcyjne; zbrojenie z polimeru wzmocnionego włóknem; podwyższona temperatura; przegląd badań.
beton; elementy konstrukcyjne; zbrojenie z polimeru wzmocnionego włóknem; podwyższona temperatura; przegląd badań.
- ACI 440R-96 State-of-the-art report on Fiber Reinforced Plastic (FRP) reinforcement for concrete structures reported by ACI Committee 440. 2002.
- Newhook J, Svecona D. Reinforcing concrete structures with Fibre Reinforced Polymers. Design manual no. 3. ISIS Canada Research Network. 2007.
- Bank LC. Composites for construction: structural design with FRP materials. Hoboken: John Wiley & Sons, Inc., 2006.
- Burgoyne C, Byars E, Guadagnini M, Manfredi G, Neocleous K, Pilakoutas K, Taerwe L, Taranu N, Tepfers R, Weber A. Technical report: FRP (Fibre Reinforced Polymer) reinforcement in RC structures. fédération internationale du béton (fib), 2007. doi: 10.1371/journal. pntd. 0001792.
- Naser MZ, Hawileh RA,Abdalla JA. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Eng. Struct. 2019. DOI: 10.1016/j.engstruct.2019.109542.
- Elgabbas BF,Ahmed E, Benmokrane E. Basalt FRP reinforcing bars for concrete structures. Proc. 4th Asia-Pacific Conf. FRP Struct. APFIS. 2013; vol. 440, no. December, pp. 11–13.
- Thiyagarajan P, Pavalan V, Sivagamasundari R. Mechanical characterization of basalt fibre reinforced polymer bars for reinforced concrete structures. Int. J. Appl. Eng. Res., 2018; vol. 13, no. 8, pp. 5858–5862.
- Pareek K, Saha P. Basalt fiber and its composites: an overview. in Proceedings of National Conference on Advances in Structural Technologies (CoAST-2019), 2019.
- Wydra M. PhD thesis: Fire resistance of concrete columns reinforced with BFRP bars. 2023.
- WydraM, Fangrat J. Concrete construction elements with fibre reinforced polymer reinforcement under fire conditions. Mater. Bud. 2025. DOI: 10.15199/33.2025.07.24.
- MaW,Yin C, Zhou J,Wang L. Repair of fire-damaged reinforced concrete flexural members:Areview. Sustain. 2019.DOI: 10.3390/su11195199.
- Chinthapalli HK, Chellapandian M, Agarwal A, Suriya Prakash S. Effectiveness of hybrid fibre-reinforced polymer retrofitting on behaviour of fire damaged RC columns under axial compression. Eng. Struct. 2020. DOI: 10.1016/j. engstruct. 2020.110458.
- Jadooe J, Al-Mahaidi R, Abdouka K. Modelling of NSM CFRP strips embedded in concrete after exposure to elevated temperature using epoxy adhesives. Constr. Build. Mater. 2017. DOI: 10.1016/j. conbuildmat. 2017.05.027.
- Thi CN, Pansuk W, Torres L. Flexural behavior of fire-damaged reinforced concrete slabs repaired with near-surface mounted (NSM) carbon fiber reinforced polymer (CFRP) rods. J. Adv. Concr. Technol. 2015. DOI: 10.3151/jact. 13.15.
- KodurV, NaserMZ, KimHS. Testing Protocols and Procedures for Undertaking Fire Resistance Tests on Concrete Structures Incorporating Fiber- -Reinforced Polymers. Polymers (Basel). 2025. DOI: 10.3390/polym17030404.
- Bisby LA, Green MF, Kodur VKR. Response to fire of concrete structures that incorporate FRP. Prog. Struct. Eng.Mater. 2005. DOI: 10.1002/pse. 198.
- Maraveas C, Miamis K, rakas AA. Fiber-reinforced polymer-streng- -thened/reinforced concrete structures exposed to fire: A review. Struct. Eng. Int. J. Int. Assoc. Bridg. Struct. Eng. 2012. DOI: 10.2749/101686612X13363929517613.
- Lau D, Qiu Q, Zhou A, Chow CL. Long term performance and fire safety aspect of FRP composites used in building structures. Constr. Build.Mater. 2016.DOI: 10.1016/j.conbuildmat.2016.09.031.
- Klamer EL, PhD thesis: Influence of temperature on concrete beams strengthened in flexure with CFRP. Eindhoven University of Technology. 2009. DOI: 10.6100/IR656177.
- Firmo JP, Correia JR, Bisby LA. Fire behaviour of FRP-strengthened reinforced concrete structural elements: A state-of-the-art review. Compos. Part B Eng. 2015. DOI: 10.1016/j. compositesb. 2015.05.045.
- Sharifianjazi F, Zeydi P, Bazli M, Esmaeilkhanian A, Rahmani R, Bazli L, Khaksar S. „Fibre-Reinforced Polymer Reinforced ConcreteMembers under Elevated Temperatures: A Review on Structural Performance. Polymers (Basel). 2022. DOI: 10.3390/polym14030472.
- Petersen MR, Chen A, Roll M, Jung SJ, Yossef M. Mechanical properties of fire-retardant glass fiber-reinforced polymer materials with alumina tri-hydrate filler. Compos. Part B Eng. 2015. DOI: 10.1016/j. compositesb. 2015.03.071.
- Rowen J, Herring B, Dembsey N. Systems approach to creating FRP to meet 2009 International Building Code requirements for interior composites. Compos. Technol. Mag. 2010, [Online]. Available: http://www.avtecindustries. com/IBC_Requirements_for_Interior_Composites-4_3.pdf.
- Asran AG, Ghith HH, Nooman M, M. Sadawy M, Khairy S. Improvement of GFRP properties exposed to fire.Al-Azhar Univ. Civ. Eng. Res.Mag. 2018; no. 40, pp. 126–134.
- Zhang ZX, Zhang J, Lu BX, Xin ZX, Kang CK, Kim JK. Effect of flame retardants on mechanical properties, flammability and foamability of PP/wood-fiber composites. Compos. Part B Eng. 2012. DOI: 10.1016/j.compositesb.2011.06.020.
- Dholakiya BZ. Use of non-traditional fillers to reduce flammability of polyester resin composites. Polim. 2009; vol. 30, no. 1, pp. 10–17.
- Kandola BK, Horrocks,ARMyler P, Blair D. The effect of intumescents on the burning behaviour of polyester-resin-containing composites. Compos. – Part AAppl. Sci. Manuf. 2002. DOI: 10.1016/S1359-835X (02) 00026-X.
- Liang JZ, Feng JQ, C.Tsui CP, Tang CY, Liu DF, Zhang SD, Huang WF.Mechanical properties and flame-retardant of PP/MRP/Mg (OH) 2/Al (OH) 3 composites. Compos. Part B Eng. 2015. DOI: 10.1016/j.compositesb. 2014.10.054.
- Nazaré S, Kandola BK, HorrocksAR. Flame-retardant unsaturated polyester resin incorporating nanoclay. Polym. Adv. Technol. 2006. DOI: 10.1002/pat.687.
- Wu L, Hoa SV, Wang H. Improvement of flammability resistance of epoxy adhesives used in infrastructure applications. Can. J. Civ. Eng. 2007. DOI: 10.1139/L06-135.
- ChakravertyA,Mishra P, Banerjee HD. Investigation of combustion of raw and acid-leached rice husk for production of pure amorphous white silica. J. Mater. Sci. 1988. DOI: 10.1007/BF01174029.
- Raoof SM, Bournas DA. TRM versus FRP in flexural strengthening of RC beams: Behaviour at high temperatures. Constr. Build. Mater. 2017. DOI: 10.1016/j. conbuildmat. 2017.07.195.
- American Society for Testing andMaterials., Ed., Standard testmethods for fire tests of building construction and materials. West Conshohocken (PA): ASTM E119. 2012.
- Chowdhury EU, PhD thesis: Behaviour of fibre reinforced polymer confined reinforced concrete columns under fire condition. 2009.
- Kodur VKR, L. BisbyA, Green MF. Experimental evaluation of the fire behaviour of insulated fibre-reinforced-polymer-strengthened reinforced concrete columns. Fire Saf. J. 2006. DOI: 10.1016/j. firesaf. 2006.05.004.
- Chowdhury E, Bisby L, Green M, Bénichou N, Kodur V. Heat transfer and structural response modelling of FRP confined rectangular concrete columns in fire,” Constr. Build. Mater. 2012. DOI: 10.1016/j.conbuildmat. 2010.12.064.
- Cree D, Chowdhury EU, Green MF, Bisby LA, and N. Bénichou N. Performance in fire of FRP-strengthened and insulated reinforced concrete columns. Fire Saf. J. 2012. DOI: 10.1016/j. firesaf. 2012.08.006.
- Bisby LA, PhD thesis: Fire behaviour of fibre-reinforced polymer (FRP) reinforced or confined concrete. 2003.
- Turkowski P, Łukomski M, Sulik P, Roszkowski P. Fire resistance of CFRP-strengthened reinforced concrete beams under various load levels. Procedia Eng. 2017. DOI: 10.1016/j.proeng.2017.02.137.
- Zhang HY, Hao X, FanW. Experimental study on high temperature properties of carbon fiber sheets strengthened concrete cylinders using geopolymer as adhesive. Procedia Eng. 2016. DOI: 10.1016/j.proeng.2016.01.078.
- El-Gamal S, Al-Jabri K, Al-Mahri A, Al-Mahrouqi S. Effects of elevated temperatures on the compressive strength capacity of concrete cylinders confined with FRP sheets: an experimental investigation. Int. J. Polym. Sci. 2015. DOI: 10.1155/2015/549187.
- Tulendinov T, Zesers A, Tamužs V. Behavior of concrete cylinders strengthened with a basalt-FRP and subjected to mechanical loads and elevated temperatures.Mech. Compos.Mater. 2017. DOI: 10.1007/s11029-017- 9676-6.
- MostefaAH, GhernoutiY, SebaibiY., „Effectiveness of cement and plaster layers in protection of FRP confined concrete exposed to high temperatures. J. Adhes. Sci. Technol. 2015. DOI: 10.1080/01694243.2015.1005860.
- Gawil B,Wu HC, ElarbiA. Modeling the behavior of CFRP strengthened concrete beams and columns at different temperatures. Fibers. DOI: 10.3390/fib8020010.
- AbulgasemMohamed Elarbi, PhD thesis: Durability performance of frp strenghtened concrete beams and columns exposed to hygrothermal environment. Wayne State University, Detroit, MI, USA, 2011. [Online]. Available: http://digitalcommons.wayne.edu/do/search/?q=Durability performance of frp strenghtened concrete beams and columns exposed to hygrothermalenvironment& start=0&context=1397974&facet=
- Al-SalloumYA,Almusallam TH, Elsanadedy HM, Iqbal RA. Effect of elevated temperature environments on the residual axial capacity of RC columns strengthened with different techniques. Constr. Build. Mater. 2016. DOI: 10.1016/j.conbuildmat. 2016.04.041.
- American Concrete Institute, Ed., ACI 440.2R-08, Guide for the Design and Con- struction of Externally Bonded FRP Systems for Strengthening Concrete Structures. 2008.
- Wardaya DAS, Sugiharto H, Pudjisuryadi P. Compressive strength of post fire exposed concrete column wrapped with fiber reinforced polymer. Civ. Eng. Dimens. 2017. DOI: 10.9744/ced. 19.2.105-110.
- El-Mahdy O, Hamdy G, Hisham M. „Nonlinear finite element analysis of insulated FRP strengthened reinforced concrete columns subjected to fire, Stavební Obz. – Civ. Eng. J. 2018. DOI: 10.14311/cej. 2018.02.0016.
- Chowdhury EU, Bisby LA, GreenMF. Investigation of Insulated FRP- -Wrapped Reinforced Concrete Columns in Fire. Fire Saf. J. 2007; vol. 42, pp. 452–460.
- Kodur VKR, Bhatt PP. A numerical approach for modeling response of fiber reinforced polymer strengthened concrete slabs exposed to fire. Compos. Struct. 2017, pp. 226–240, 2018. DOI: 10.1016/j.compstruct. 2017.12.051.
- Blontrock H, Taerwe L, Vandevelde P. A numerical approach for modeling response of fiber reinforced polymer strengthened concrete slabs exposed to fire. FRPRCS-5 Fiber-Reinforced Plast Reinf. Concr. Struct. 2001; pp. 547–56.
- Carlos TB, Rodrigues JPC, de Lima RCA, Dhima D. Experimental analysis on flexural behaviour of RC beams strengthened with CFRP laminates and under fire conditions. Compos. Struct. 2018. DOI: 10.1016/j.compstruct. 2018.01.094.
- Dong K, Hu K, GaoW. Fire behavior of full-scale CFRP-strengthened RC beams protected with different insulation systems. J. Asian Archit. Build. Eng. 2016. DOI: 10.3130/jaabe. 15.581.
- Firmo JP, Correia JR. Fire behaviour of thermally insulated RC beams strengthened with EBR-CFRP strips: Experimental study. Compos. Struct. 2015. DOI: 10.1016/j.compstruct.2014.11.063.
- Zhang HY, Lv HR, Kodur V, Qi SL. Comparative fire behavior of geopolymer and epoxy resin bonded fiber sheet strengthened RC beams. Eng. Struct. 2018. DOI: 10.1016/j.engstruct.2017.11.027.
- Blontrock H, Taerwe L, Vandevelde P. „Fire tests on concrete beams strengthened with fiber composite laminates, in October 5th-7th In proceedings of the international PhD symposium in civil engineering. Vienna, Austria: Konrad Bergmeister, 2000, pp. 151–161.
- Gao WY, Hu K, Lu Z. Fire resistance experiments of insulated CFRP strengthened reinforced concrete beams. Tumu Gongcheng Xuebao/China Civ. Eng. J. 2010; vol. 43 (3).
- Kodur VKR, Bhatt PP, NaserMZ. High temperature properties of fiber reinforced polymers and fire insulation for fire resistance modeling of strengthened concrete structures. Compos. Part B Eng. 2019. DOI: 10.1016/j.compositesb. 2019.107104.
- Williams B, Kodur V, Green MF, Bisby L. Fire endurance of fiber-reinforced polymer strengthened concrete T-Beam. ACI Struct. J. 2008. DOI: 10.14359/19069.
- Hawileh RA, Naser M, Zaidan W, Rasheed HA. Modeling of insulated CFRP-strengthened reinforced concrete T-beam exposed to fire. Eng. Struct. 2009; vol. 31, no. 12, pp. 3072–3079.
- El-Mahdy O, Hamdy G,AbdullahM. Numerical investigation of FRP- -strengthened reinforced concrete beams at high temperatures. Stavební Obz. – Civ. Eng. J. 2019. DOI: 10.14311/cej. 2019.02.0018.
- El-Mahdy O, Hamdy G, Abdullah M. Numerical investigation of the performance of insulated FRP-strengthened reinforced concrete beams in fire,” Stavební Obz. – Civ. Eng. 2018. DOI: 10.14311/cej. 2018.04.0046.
- Naser M, Abu-Lebdeh G, Hawileh R. Analysis of RC T-beams strengthened with CFRP plates under fire loading using ANN. Constr. Build. Mater. 2012. DOI: 10.1016/j.conbuildmat.2012.07.001.
- Behnam B, Ronagh HR, Lim PJ. Numerical evaluation of the post- -earthquake fire resistance of CFRP-strengthened reinforced concrete joints based on experimental observations. Eur. J. Environ. Civ. Eng. 2016. DOI: 10.1080/19648189.2015.1018448.
- Turkowski P. Fire Resistance of Fire-Protected Reinforced Concrete Beams Strengthened with Externally Bonded Reinforcement Carbon Fibre- -Reinforced Polymers at the Full Utilisation Degree.Materials (Basel). 2023. DOI: 10.3390/ma16155234.
- Silva P, Escusa G, Azenha M. Experimental investigation of RC slabs strengthened with NSM CFRP system subjected to elevated temperatures up to 80°C, in the 8th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, Hong Kong, 2016, pp. 936–942.
- Metwally M, Abou-Zeid M. Impact of elevated temperature, chemical and workmanship on performance of beams with Near Surface Mounted FRP bars, in CSCE Annual Conference Growing, Laval (Greater Montreal), 2019.
- Del Prete I, Bilotta A, Bisby L, Nigro E. High TG FRP & cementitious adhesive, Potential benefits in fire for NSM FRP strengthened reinforced concrete beams. Appl. Struct. Fire Eng. 2016.
- Del I, Bilotta A, Bisby L, Nigro E. Elevated temperature response of RC beams strengthened with NSMFRP bars bonded with cementitious grout. Compos. Struct., vol. 258, no. September 2020, p. 113182, 2021. DOI: 10.1016/j. compstruct. 2020.113182.
- Truong GT, Lee HH, Choi KK. Flexural behavior of RC beams strengthened with NSM GFRP strips after exposed to high temperatures. Eng. Struct. 2017, pp. 203–215, 2018. DOI: 10.1016/j. engstruct. 2018.06.110.
- Baena M, Jahani Y, Torres L, Barris C, Perera R. Flexural Performance and End Debonding Prediction of NSMCarbon FRP-Strengthened Reinforced Concrete Beams under Different Service Temperatures. Polymers (Basel). 2023. DOI: 10.3390/polym15040851.
- ISO 834-1:1999 Fire-resistance tests – Elements of building construction – Part 1: General requirements.
- Firmo JP, Correia JR. Fire behaviour of thermally insulated RC beams strengthened with NSM-CFRP strips: Experimental study. Compos. Part B Eng. 2015. DOI: 10.1016/j.compositesb.2015.02.018.
- Firmo, JP, Arruda MRT, Correia JR, Rosa IC. Three-dimensional finite element modelling of the fire behaviour of insulated RC beams strengthened with EBR and NSMCFRP strips. Compos. Struct. 2018. DOI: 10.1016/j. compstruct. 2017.01.082.
- Firmo JP, Arruda MRT, Correia JR. Contribution to the understanding of the mechanical behaviour of CFRP-strengthened RC beams subjected to fire: Experimental and numerical assessment. Compos. Part B Eng. 2018. DOI: 10.1016/j. compositesb. 2014.04.007.
- Firmo JP,ArrudaMRT, Correia JR, Tiago C. Flexural behaviour of partially bonded carbon fibre reinforced polymers strengthened concrete beams: Application to fire protection systems design. Mater. Des. 2015. DOI: 10.1016/j. matdes.2014.10.053.
- Assad M, Hawileh RA, Abdalla JA. Modeling the behavior of CFRP- -strengthened RC slabs under fire exposure. Procedia Struct. Integr. 2022. DOI: 10.1016/j. prostr. 2022.12.210.
- AzevedoAS, Firmo JP, Correia JR, Chastre C, Biscaia H, Franco N. Fire behaviour of CFRP-strengthened RC slabs using different techniques – EBR, NSM and CREatE. Compos. Part B Eng. 2021, p. 109471, 2022. DOI: 10.1016/j.compositesb.2021.109471.
dr inż. Małgorzata Wydra, Politechnika Warszawska, Wydział Budownictwa, Mechaniki i Petrochemii
ORCID: 0000-0002-4629-9656
dr hab. inż. Jadwiga Fangrat, prof. ITB, Instytut Techniki Budowlanej, Zakład Badań Ogniowych
ORCID: 0000-0002-7871-0032
ORCID: 0000-0002-4629-9656
dr hab. inż. Jadwiga Fangrat, prof. ITB, Instytut Techniki Budowlanej, Zakład Badań Ogniowych
ORCID: 0000-0002-7871-0032
dr inż. Małgorzata Wydra, Politechnika Warszawska, Wydział Budownictwa, Mechaniki i Petrochemii
ORCID: 0000-0002-4629-9656
Correspondence address: malgorzata.wydra@pw.edu.pl
Received: 22.07.2025 / Artykuł wpłynął do redakcji: 22.07.2025 r.
Revised: 15.09.2025 / Otrzymano poprawiony po recenzjach: 15.09.2025 r.
Published: 23.12.2025 / Opublikowano: 23.12.2025 r.
