Digital Image Correlation method for testing unbound mixtures in road pavement


openaccess, Vol. 636 (8) 2025 / czwartek, 28 sierpnia, 2025

Metoda cyfrowej korelacji obrazu w zastosowaniu do badań niezwiązanych mieszanek nawierzchni drogowych

(Open Access)

DOI: 10.15199/33.2025.08.08

citation/cytuj: Kamiński K. Digital Image Correlation method for testing unbound mixtures in road pavement. Materiały Budowlane. 2025. Volume 636. Issue 08. Pages 61-71. DOI: 10.15199/33.2025.08.08

In this article selected scientific publications from recent years with the use of digital image correlation DIC method are characterized. Laboratory tests concerned unbounded and loose materials are presented. The recorded images allowed for the analyses of selected parameters, such as displacement, deformation, velocity. The analyses expanded the knowledge on phenomena occurring in road structures, ground, retaining structures, slope stability.

W artykule przedstawiono wybrane publikacje naukowe z ostatnich lat dotyczące wykorzystania metody cyfrowej korelacji obrazu DIC. Badania laboratoryjne dotyczyły materiałów niezwiązanych i sypkich. Rejestrowane obrazy pozwalały na analizy wybranych parametrów, m.in. przemieszczenia, odkształcenia, prędkości. Analizy wzbogaciły wiedzę na temat zjawisk zachodzących w konstrukcjach nawierzchni drogowych, podłożu gruntowym, konstrukcjach oporowych, stateczności skarp itp.
deformation measurement; Digital Image Correlation; DIC; strain localization; unbounded mixture.

pomiar deformacji; cyfrowa korelacja obrazu; Digital Image Correlation; DIC; lokalizacja odkształceń; mieszanki niezwiązane.
  1. Sutton MA, Orteu JJ, Schreier HW, Image Correlation for Shape, Motion and Deformation Measurements. Cambridge, MA, USA: MIT Press; 1986.
  2. Walotek K, Bzówka J, Ciołczyk A, Examples of the Use of the ARAMIS 3D Measurement System for the Susceptibility to Deformation Tests for the Selected Mixtures of Coal Mining Wastes. Sensors, vol. 21, no. 13, pp. 695- 701, 2021; https://doi.org/10.3390/s21134600
  3. Larsson S, Gustafsson G, Oudich A, Jonsen P, Haggblad H-A. Experimental methodology for study of granular material flow using digital speckle photography. Chemical Engineering Science, vol. 155, pp. 524-536, 2016; https://doi.org/10.1016/j.ces.2016.09.010
  4.  Khatami H, Deng A, Jaksa M. An experimental study of the active arching effect in soil using the digital image correlation technique. Computers and Geotechnics, vol. 108, pp. 183-196, 2019; https://doi.org/10.1016/j.compgeo. 2018.12.023
  5. Chien C-H, Su T-H, Huang C-J, Chao Y-J, Yeh W-L, Lam P-S. Application of digital image correlation (DIC) to sloshing liquids. Optics and Lasers in Engineering, vol. 115, pp. 42-52, 2019; https://doi.org/10.1016/j.optlaseng. 2018.11.016
  6.  Larsson S, Gustafsson G, Oudich A, Jonsen P, Haggblad H-A. Low-cost digital image correlation and strain measurement for geotechnical applications. Strain, vol. 56, no. 74, pp. 1-15, 2020; https://doi.org/10.1111/str.12348
  7.  Huang F, Wu C, Ni P, Wan G, Zheng A, Jang B-A, Karekal S. Experimental analysis of progressive failure behavior of rock tunnel with a fault zone using non-contact DIC technique. International Journal of Rock Mechanics and Mining Sciences, vol. 132, 2020; https://doi.org/10.1016/j. ijrmms.2020.104355
  8. Gadel R, Kalla S, Sudarsanan N, Karpurapu R. Assessment of load distribution mechanism in geocell reinforced foundation beds using Digital Imaging Correlation Techniques. Transportation Geotechnics, vol. 31, 2021; https://doi.org/10.1016/j.trgeo.2021.100664
  9. Rafi NI, Rahman MS, Tarin F, Sadeque MI. Distorted Path Analysis of Different Layered Soil Pressurized Under Uniform Displacement Rate: A Laboratory-based Study. International Research Journal of Engineering and Technology, vol. 09, no. 09, 2022.
  10. Mirzaeifar H, Hatami K, Abdi MR. Pullout testing and Particle Image Velocimetry (PIV) analysis of geogrid reinforcement embedded in granular drainage layers. Geotextiles and Geomembranes, vol. 50, no. 6, 2022, pp. 1083–1109; https://doi.org/10.1016/j.geotexmem.2022.06.008
  11. Liu Y, Zhao Y, Zhang D, Liu Z. The long-term mechanical performance of geogrid-reinforced soil retaining walls under cyclic footing loading. Case Studies in Construction Materials, 17,2022; https://doi.org/10.1016/j. cscm.2022.e01642
  12.  Kapor M, Skejić A, Medić S, Balić A. DIC assessment of foundation soil response for different reinforcement between base and soft subgrade layer – Physical modeling. Geotextiles and Geomembranes, vol. 51, no. 3, pp. 390–404, 2023; https://doi.org/10.1016/j.geotexmem.2023.01.003
  13. Alhakim G, Núñez-Temes C, Ortiz-Sanz J, Arza-García M, Jaber L, Gil-Docampo ML. Experimental application and accuracy assessment of 2D-DIC in meso-direct-shear test of sandy soil. Measurement: Journal of the International Measurement Confederation, vol. 211, 2023; https://doi. org/10.1016/j.measurement.2023.112645
  14. Zhang RX, Su D, Lin XT, Zhu TF, Lei G, Chen XS. Investigation of the soil arching evolution in the ground with or without a tunnel. Transportation Geotechnics, vol. 43, 2023; https://doi.org/10.1016/j.trgeo.2023.101149
  15. Kwiecień S, Ihnatov S. Wpływ technologii wymiany dynamicznej na kształt kolumn w warunkach laboratoryjnych. Materiały Budowlane, vol. 1, no. 10, pp. 35–41, 2023; https://doi.org/10.15199/33.2023.10.07
  16. Ads A, Shariful Islam M, Iskander M. Longitudinal settlements during tunneling in soft Clay, using transparent soil models. Tunnelling and Underground Space Technology, vol. 136, 2023; https://doi.org/10.1016/j. tust.2023.105042
  17.  Leśniewska D, Tordesillas A, Pietrzak M, Zhou S, Nitka M. Structured deformation of granular material in the state of active earth pressure. Computers and Geotechnics, vol. 157, 2023; https://doi.org/10.1016/j.compgeo. 2023.105316
  18. Luo P, Li D, Zhang C, Ru W, Han Z, Ma J. Experimental investigation on biaxial mechanical properties of laminated rock and floor heave mechanism of tunnel based on DIC. Engineering Failure Analysis, vol. 156, 2024; https://doi.org/10.1016/j.engfailanal.2023.107848
mgr inż. Krzysztof Kamiński, Politechnika Śląska, Szkoła Doktorów
ORCID: 0009-0001-9639-511X

mgr inż. Krzysztof Kamiński, Politechnika Śląska, Szkoła Doktorów
ORCID: 0009-0001-9639-511X

Correspondence address: krzysztof.kaminski@polsl.pl

Full paper:

DOI: 10.15199/33.2025.08.08

Article in PDF file

Received: 10.03.2025 / Artykuł wpłynął do redakcji: 10.03.2025 r.
Revised: 28.05.2025 / Otrzymano poprawiony po recenzjach: 28.05.2025 r.
Published: 21.08.2025 / Opublikowano: 21.08.2025 r.