Ocena uszkodzeń betonu w konstrukcjach spowodowanych reakcją alkalia-krzemionka
(Open Access)
DOI: 10.15199/33.2025.11.05
citation/cytuj: Owsiak Z., Leks A. Assessment of concrete damage in structures caused by alkali-silica reaction. Materiały Budowlane. 2025. Volume 639. Issue 11. Pages 41-50. DOI: 10.15199/33.2025.11.05
- Abstract / Streszczenie
- Keywords / Słowa kluczowe
- Literature
- Afiliation
- Corresponding Author
- Open Access
The alkali-aggregate reaction leads to concrete degradation, affecting durability and safety of use of the structure. The article presents methods for damage assessment: visual field inspection, non-destructive testing and laboratory techniques. It also highlights modern approaches such as digital image analysis and machine learning algorithms. It emphasizes the importance of selecting the proper methods for diagnosis, repair planning and structures management.
Reakcja alkalia-kruszywo prowadzi do degradacji betonu, wpływając na trwałość i bezpieczeństwo użytkowania konstrukcji. W artykule przedstawiono metody oceny uszkodzeń: wizualną inspekcję terenową, badania nieniszczące oraz techniki laboratoryjne. Zwrócono także uwagę na nowoczesne podejście, jak cyfrowa analiza obrazu i algorytmy uczenia maszynowego i podkreślono znaczenie właściwego doboru metod przy diagnozie, planowaniu napraw i zarządzaniu konstrukcjami.
Reakcja alkalia-kruszywo prowadzi do degradacji betonu, wpływając na trwałość i bezpieczeństwo użytkowania konstrukcji. W artykule przedstawiono metody oceny uszkodzeń: wizualną inspekcję terenową, badania nieniszczące oraz techniki laboratoryjne. Zwrócono także uwagę na nowoczesne podejście, jak cyfrowa analiza obrazu i algorytmy uczenia maszynowego i podkreślono znaczenie właściwego doboru metod przy diagnozie, planowaniu napraw i zarządzaniu konstrukcjami.
damage assessment; non-destructive techniques; cracking; alkali-silica reaction.
ocena uszkodzeń; techniki nieniszczące; pękanie; reakcja alkalia-krzemionka.
ocena uszkodzeń; techniki nieniszczące; pękanie; reakcja alkalia-krzemionka.
- Stanton TE. Expansion of Concrete Through Reaction Between Cement and Aggregate. Proc Am Soc Civil Eng. 1941; 66 (10): 1781–1811.
- Thomas MDA, Fournier B, Folliard KJ. Alkali-aggregate reactivity (AAR) facts book. Federal Highway Administration (FHWA), US Department of Transportation. FHWA-HIF-13-019; 2013.
- Glinicki M, Antolik A, Dąbrowski M, Dziedzic K, Gibas K, Jóźwiak- -Niedźwiedzka D, SobczakM. Diagnostyka betonu w nawierzchni drogi S8 Wolbórz-Polichno na podstawie badań odwiertów. Warszawa; 2018.
- Mehta PK, Monteiro PJM. Concrete Microstructure. Properties and Materials, 3rd edition. Mc Graw-Hill Professional; 2006.
- Thomas MDA, Fournier B, Folliard KJ, Resendez Y. Alkali-Silica Reactivity Field Identification Handbook. Federal Highway Administration. US Department of Transportation. FHWA-HIF-12-022; 2011.
- Hagelia P. Chemistry of ASR-gelsand porefluids inultra-accelerated mortarbars: evidence for Si-control on gel expansion properties. 13th ICAAR. Norway; 2008.
- Zahedi A, Trottier C, Sanchez LFM, Noël M. Microscopic assessment of ASR-affected concrete under confinement conditions. Cem Con. Res. 2021; DOI: 10.1016/j.cemconres. 2021.106456.
- Owsiak Z, Zapała-Sławeta J, Czapik P. Diagnosis of concrete structures distress due to alkali-aggregate reaction. Bull Pol Acad Sci Tech Sci. 2015; DOI: 10.1515/bpasts-2015-0003.
- Jensen V. Diagnosis of alkali silica reaction. 15th ICAAR. Brazil; 2016.
- Sommer H, Nixon PJ, Sims I. RILEM TC 191-ARP: „Alkali-reactivity and prevention – Assessment, specification and diagnosis of alkali-reactivity”, AAR-5: Rapid preliminary screening test for carbonate aggregates, Materials and Structures. 2005; 38: 787-792.
- Figueira RB, Sousa R, Coelho L,AzenhaM,Almeida JM, Jorge PAS, Silva CJR. Alkali-silica reaction in concrete: Mechanisms, mitigation and test methods. Constr BuildMater. 2019;DOI: 10.1016/j.conbuildmat.2019.07.230.
- Fournier B, Bérubé M, Folliard KJ, Thomas MDA. Report on the Diagnosis, Prognosis, and Mitigation of Alkali-Silica Reaction (ASR) in Transportation Structures. FHWA-HIF-09-004; 2010.
- Thomas MDA, Folliard KJ, Fournier B, Rivard P, Drimalas T, Garber S. Methods for Evaluating and Treating ASR-Affected Structures: Results of Field Application and Demonstration Projects –Volume II: Details of Field Applications and Analysis. FHWA-HIF-14-0002; 2013.
- Farny JA, Kerkhoff B. Concrete Technology: Diagnosis and Control of Alkali-Aggregate Reactions in Concrete. Concrete Technology. 2007; 1–23.
- Igarashi G, Yamada K, Xu Y,Wong H, Hirono S, Ogawa S. Image analysis of alkali-aggregate gel in concrete prismtest with alkali-wrapping. 15th ICAAR. Brazil; 2016.
- Sanchez LFM, Fournier B, Jolin M, Bedoya MAB, Duchesne J. Use of Damage Rating Index to quantify alkali-silica reaction damage in concrete: Fine versus coarse aggregate.ACIMater J. 2016; DOI: 10.14359/51688983.
- Sanchez LFM, Fournier B, Jolin M, Mitchell D, Bastien J. Overall assessment ofAlkali-Aggregate Reaction (AAR) in concretes presenting different strengths and incorporating a wide range of reactive aggregate types and natures. Cem Conc Res. 2017; DOI: 10.1016/j.cemconres.2016.12.001.
- VilleneuveV, FournierB,Duchesne J.Determination of the damage in concrete affected by asr-the damage rating index (DRI. 14th ICAAR. Texas; 2012.
- Sanchez LFM. Fournier B, Jolin M, Duchesne J. Reliable quantification of AAR damage through assessment of the Damage Rating Index (DRI). Cem Conc Res. 2014; DOI: 10.1016/j. cemconres. 2014.08.002.
- BezerraA,Andrade G, Sanchez LFM, Fraser ML. Automated assessment of AAR damage in concrete in progress. 16th ICAAR:Volume 1, Portugal; 2022.
- Bezerra A, Trottier C, Sanchez LFM, Fournier B. The use of artificial intelligence for assessing an overpass affected by Alkali-Silica Reaction (ASR). 11th IABMAS; 2022. pp. 354–361.
- Sanchez LFM, Fournier B, Jolin M, Bastien J. Evaluation of the Stiffness Damage Test (SDT) as a tool for assessing damage in concrete due to alkali-silica reaction (ASR): Input parameters and variability of the test responses. Const BuildMater. 2015; DOI: 10.1016/j.conbuildmat.2014.11.071.
- Sanchez LFM, Fournier B, JolinM. Critical parameters of the stiffness damage test for assessing concrete damage due to alkali-silica reaction. 14th ICAAR. Texas; 2012.
- Sanchez LFM, Fournier B, JolinM, Bastien J,Mitchell D. Practical use of the Stiffness Damage Test (SDT) for assessing damage in concrete infrastructure affected by alkali-silica reaction. Const Build Mater. 2016; DOI: 10.1016/j. conbuildmat. 2016.08.101.
- Fecteau PL, Fournier B. Residual expansion testing: new aspects on cores extracted from exposure blocks submitted to environmental conditions. 14th ICAAR. Texas; 2012.
- Zubaida N, Zahedi A, Sanchez LFM, Rivard P. Evaluation of the potential of residual expansion in concrete affected by Alkali Aggregate Reaction. 16th ICAAR: Volume 1. Portugal; 2022.
- Fournier B, Sanchez L, Duchesne J, Goyette S. Evaluation of the available alkali content in concrete through a modified hot-water extraction method. 15th ICAAR. Brazil; 2016.
- ThomasMDA, Folliard KJ, Fournier B, Rivard P, Drimalas T.Methods for Evaluating and Treating ASR-Affected Structures: Results of Field Application and Demonstration Projects Volume I: Summary of Findings and Recommendations Final Report. FHWA-HIF-14-0002; 2013.
- Souma VE. Diagnosis and Prognosis of AAR Affected Structures. RILEM State-of-the-Art Reports; 2021.
- Abrishami H. Bonded or Unbonded Technologies for Nuclear Reactor Prestressed Concrete Containments, Nuclear energy agency committee on the safety of nuclear installations; 2015.
- Jensen V. Elgeseter bridge in Trondheim damaged by alkali silica reaction: microscopy, expansion and relative humidity measurements, treatment with mono silanes and repair. 9th EMABM. Norway; 2003.
- Abdelrahman M, ElBatanouny MK, Ziehl P, Fasl J, Larosche CJ, Fraczek J. Classification of alkali–silica reaction damage using acoustic emission. AIP Conf. Proc. 2015; DOI: 10.1063/1.4940610.
- Lokajíček T, Přikryl R, Šachlová Š, Kuchařová A: Acoustic emission monitoring of crack formation during alkali silica reactivity accelerated mortar bar test. Eng Geo. 2017; DOI: 10.1016/j.enggeo.2017.02.009.
- Iliopoulos SN, Lamberti A, Schildermans K, Ben S, Hassine H. Monitoring of ASR affected samples using different NDT-technique. 16th ICAAR: Volume 1. Portugal; 2022.
- Tayfur S, Yuksel C, Akar O, Alver N, Andic-Cakir O. Investigation of alkali silica reaction damage by acoustic emission and damage rating index methods. 16th ICAAR: Volume 1. Portugal; 2022.
- Zapała-Sławeta J, Świt G. Monitoring of the Impact of Lithium Nitrate on theAlkali–aggregate Reaction Using Acoustic Emission Methods. Materials. 2019; DOI: 10.3390/ma12010020.
- Nakagawa H, Taniguchi T, Matsushima M. An investigation of ultrasonic method to monitor expansion of concrete due to ASR. 16th ICCAR: Volume 1. Portugal; 2022.
- Sargolzahi M, Kodjo SA, Rivard P, Rhazi J. Effectiveness of nondestructive testing for the evaluation of alkali–silica reaction in concrete. Const Build Mater. 2010; DOI: 10.1016/j. conbuildmat. 2010.01.018.
- PagnottaA, Trejo D, Gardoni P. Effects on impact-echo signals caused by adjacent steel reinforcing bars and voids in lap-splice regions: experimental study. 14th ICAAR. Texas; 2012.
- Malone C, Sun H, Zhu J. Nonlinear Impact-Echo Test for Quantitative Evaluation of ASR Damage in Concrete, J. Nondestruct Eval. 2023; DOI: 21203/rs. 3. rs-3039855/v1.
- Laurens S, Balayssac JP, Rhazi J, Arliguie G. Influence of concrete relative humidity on the amplitude of Ground-Penetrating radar (GPR) signal. Mater Struct. 2002; DOI: 10.1007/BF02533080.
- Omikrine Metalssi O, Godart B, Toutlemonde F. Effectiveness of nondestructive methods for the Evaluation of structures affected by internal swelling reactions: a review of electric, seismic and acoustic methods based on laboratory and site experiences. Exp Tech. 2015; 39: 65–76.
- Chappex T, Hammerschlag JG, Kronenberg P. Correlation of mechanical fatigue testing and semi-quantitative optical microscopy analysis for the robust diagnosis of field ASR damaged structures. 16th ICAAR: Volume 1. Portugal; 2022.
- Weise F, Voland K, Pirskawetz S, Meinel D. Innovative measurement techniques for characterising internal damage processes in concrete due to ASR. 14th ICAAR. Texas; 2012.
- Olague C, Olague G, Pérez JA, Clemente E, Wenglas G, Castaneda J. Digital image analysis of deteriorated concrete treated with uranyl acetate for detection of alkali aggregate reaction. 15th ICAAR. Brazil; 2016.
prof. dr hab. inż. Zdzisława Owsiak, Politechnika Świętokrzyska w Kielcach, Wydział Budownictwa i Architektury
ORCID: 0000-0002-9278-912X
mgr inż. Anna Leks, Politechnika Świętokrzyska w Kielcach, Wydział Budownictwa i Architektury
ORCID: 0009-0008-2007-779X
ORCID: 0000-0002-9278-912X
mgr inż. Anna Leks, Politechnika Świętokrzyska w Kielcach, Wydział Budownictwa i Architektury
ORCID: 0009-0008-2007-779X
mgr inż. Anna Leks, Politechnika Świętokrzyska w Kielcach, Wydział Budownictwa i Architektury
ORCID: 0009-0008-2007-779X
Correspondence address: aleks@tu.kielce.pl
Received: 28.07.2025 / Artykuł wpłynął do redakcji: 28.07.2025 r.
Revised: 01.09.2025 / Otrzymano poprawiony po recenzjach: 01.09.2025 r.
Published: 21.11.2025 / Opublikowano: 21.11.2025 r.
