Pilot studies of skid resistance of historic pavement surfaces


openaccess, Vol. 608 (4) 2023 / poniedziałek, 24 kwietnia, 2023

(Open Access)

DOI: 10.15199/33.2023.04.03

Waluś Konrad J. , Gryszpanowicz Piotr, Rymsza Barbara. 2023. Pilot studies of skid resistance of historic pavement surfaces. Volume 608. Issue 4. Pages 11-14. Article in PDF file

Accepted for publication: 27.02.2023 r.

The pavement surface with high slip resistance not only enables safe movement of pedestrians, but also greatly affects its stability and balance. The large variety of materials used on short sections of sidewalks results in fluctuations in the slip resistance value, which may result in a local change in the slip risk level. Measurements made using the British pendulum made it possible to identify potentially dangerous places where the risk of slipping was likely (P2). Three historic surfaces were selected for experimental measurements and three types of sliders were used: type 55, with children's sports shoes and with a flip-top sole. The article presents the results of anti-slip measurements of historic pavements made of the so-called cubes made of field stones, cinder concrete cubes and basalt cubes. An analysis of the anti-skid properties of the tested surfaces was carried out.
  1. Enkhjargal OE, Li KW. Subjective ratings of floor slippery on common indoor and outdoor floors, Int. J. Eng. Technol. 2019; DOI: 10.7763/IJET. 2019. V11.1154.
  2. Silva G, Beltrán A, Muňoz A, Escrig I, Llobell C, Sanchís M, Lillo G. Optimised combinations of ceramic flooring and footwear for work environments, p. 1- 14, Conference: QUALICER 2018At: Castellón – Spain.
  3. Jhou SY, HsuWC, Hsu CC.Anew Numerical simulation process for footwear slip resistance analysis, in: K.P. Lin, R. Magjarevic, P. de Carvalho (Eds.), Future Trends in Biomedical and Health Informatics and Cybersecurity in Medical Devices. ICBHI 2019. IFMBE Proceedings. 2020, https://doi. org/10.1007/978-3-030-30636-6_7.
  4. Sarkar S, Raj R, Vinay S, Maiti J, Pratihar DK. An optimization-based decision tree approach for predicting slip-trip-fall accidents at work. Saf. Sci. 2019; DOI: 10.1016/j. ssci.2019.05.009.
  5. Atlas R. What is the role of design and architecture in slip, trip, and fall accidents?, in: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 63 SAGE Publications, Sage CA: LosAngeles, CA, 2019; DOI: 10.1177/10711813196310.
  6. Weber A, Nickel P, Hartmann U, Friemert D, KaramanidisK.Contributions of training programs supported by VR techniques to the prevention of STF accidents, in: International Conference on Human-Computer Interaction, Springer, Cham, 2020; DOI: 10.1007/978-3-030-49904-4_20.
  7. Yu LX, Hon CY. Safety climate within ontario restaurants, Prof. Saf. 2020; 65 (11): 39 – 44.
  8. Larue GS, Popovic V, Legge M, Brophy C, Blackman R. Safe trip: factors contributing to slip, trip and fall risk at train stations. Appl. Ergon. 2021; DOI: 10.1016/j.apergo.2020.103316.
  9. Waluś KJ, Warguła Ł, Wieczorek B, Krawiec P. Slip risk analysis on the surface of floors in public utility buildings, https://doi.org/10.1016/j.jobe. 2022.104643.
  10. Khaday S, Li KW. Friction measurement on common floor using a horizontal pull slip meter. 2019; https://doi. org/10.18178/ijesd. 2019.10.9.1187.
  11. Wen-Ruey C, Li KW, Huang Y-H, Filiaggi A, Courtney TK. Objective and subjective measurements of slipperiness in fast-food restaurants in the USA and their comparison with the previous results obtained in Taiwan, https://doi. org/ 10.1016/j. ssci. 2006.06.001
  12.  Sudoł E, Szewczak E, Małek M. Comparative Analysis of Slip Resistance Test Methods for Granite Floors. https://doi.org/10.3390/ma14051108.
  13. Li KW, ChenY, Zou F, Li N, Duan T, Perception of risk of tripping under lighting and obstacle conditions, https://doi. org/10.1002/hfm. 20815.
  14. Eyre M, Foster PJ, Hallas K, Shaw R. The use of laser scanning as a method for measuring stairways following an accident, https://doi. org/10.1179/1752270615Y. 0000000014.
  15.  Leclercq S, Saulnier H. Floor slipresistance changes in food sector workshops: prevailing role played by „fouling, Saf. Sci. 2002; 40 (7–8): 659 – 673.
  16.  Barreca F, Cardinali G, Fichera CR. Assessment of flooring slipperiness for food industry buildings,Agricultural Engineering International: The CIGR Journal Open. 2015; http://www.cigrjournal. org.
  17. Liu L, Li KW, LeeY-H, Chen CC, Chen C-Y. Friction measurements on „anti-slip” floors under shoe sole, contamination, and inclination conditions, Saf. Sci. 2010; 48 (10): 1321 – 1326.
  18. Norlander A, Miller M, Gard G. Perceived risks for slipping and falling at work during wintertime and criteria for a slip-resistant winter shoe among Swedish outdoor workers, Saf. Sci. 2015; 73: 52 – 61.
  19.  Manning DP, Jones C. The superior slip-resistance of footwear soling compound T66/103, Saf. Sci. 1994; 18 (1): 45 – 60.
  20. Wąsowska I. Are Cracow’s clinics friendly for disabled people?Environ.Med. 2014; 17 (4): 63 – 67.
  21. Stamenković D, Banić M., Nikolić M., MiltenovićA., Đekić P., Influential parameters of footwear slip resistance, in: 16th International Conference on Tribology, SERBIATRIB „19, Kragujevac, Serbia, 15–17, May 2019, pp. 601 – 606.
  22. Bowman R. Can we develop slip resistance metrics that ensure appropriate tile selection?, p. 1-15, Conference:QUALICER 2016,www.qualicer.org, Castellón – Spain https://universaldesignaustralia. net.au/wp-content/uploads/2016/07/Bowman- Slipbusters-paper. pdf (dostęp: 2022-01-05).
  23.  ANSI A137.1 American National Standard Specifications for Ceramic Tile.
  24. Sariisik A. Safety analysis of slipping barefoot on marble covered wet areas. Saf. Sci. 2009; 47 (10): 1417 – 1428.
  25. HaslamRA, Boocock M, Lemon P, Thorpe S. Maximum acceptable loads for pushing and pulling on floor surfaces with good and reduced resistance to slipping. Saf. Sci. 2002; 40 (7–8): 625 – 637.
  26. Standardy projektowania budynków dla osób z niepełnosprawnościami, https://budowlaneabc. gov. pl/standardy-projektowania-budynkow- dla-osob-niepelnosprawnych/stanowiska- -postojowe-dla-samochodow/nawierzchnia-stanowisk- postojowych/ (dostęp: 2022-11-08).
  27. Onyango SO, Hamam Y, Djouani K, Daachi B. Modeling a powered wheelchair with slipping and gravitational disturbances on inclined and non-inclined surfaces, https://doi. org/ 10.1177/0037549716638427.
  28.  Silva LCA, Dedini FG, Correa FC, Eckert JJ, BeckerM.Measurement ofwheelchair contact forcewith a lowcost bench test,Med.Eng. Phys. 2016; https://doi.org/10.1016/j.medengphy. 2015.11.014.
  29.  Rymsza B, Kaperczak K, Kilian-Walerzak J. O konieczności i możliwościach zapewnienia dostępności dla osób niepełnosprawnych do zabytkowych obiektów użyteczności publicznej. „Ochrona Dziedzictwa Kulturowego” 9/2020 10.35784/odk. 1864 ISSN 2543-6422.
  30. Ryan S, Reynolds A. New Housing Options for people with significant disability. Summer Foundation. 2015; http://www.summerfoundation.org.au/ resources/new-housing-options-design-insights/.
  31.  AS 4586-2013 Slip Resistance Classification of New Pedestrian Surface Materials.
  32.  Polasik J, Waluś KJ. Comparative Analysis of the Roughness of Asphalt and Concrete Surface, Telematics – Support for Transport: 14th International Conference on Transport Systems Telematics, TST 2014, Katowice/Kraków/Ustroń, Poland, October 22-25, 2014. Selected Papers, 2014. – Communications in Computer and Information Science; vol. vol. 471, s. 350-358, pISSN: 1865-0929, ISBN: 978-3-662-45316-2, DOI: 10.1007/978-3-662-45317-9_37.
  33.  Peng Y, Qiang Li J, Zhan Y, Kelvin C,Wang P, Yang G. Finite element method-based skid resistance simulation using in-situ 3Dpavement surface texture and friction data, MDPI. Materials. 2019, https://doi.org/10.3390/ma12233821, 3821.
  34. HB 198: 2014 Guide to the Specification and Testing of Slip Resistance of Pedestrian Surfaces.
  35. Grochowska-Iwańska K, Gryszpanowicz P., Dzieje drogownictwa w Płocku, Politechnika Warszawska, Wydział Budownictwa, Mechaniki i Petrochemii, Instytut Budownictwa, 351 s., ISBN 978-83-946540-4-7, Płock 2020.
  36.  Gryszpanowicz P. Urbanizacja Płocka, Akademia Humanistyczna im. Aleksandra Gieysztora w Pułtusku, 343 s., ISBN 978-83-75- 49-278-1, Pułtusk 2019.
  37. Gryszpanowicz P. Techniczno-prawne uwarunkowania rewitalizacji ulic Starego Miasta w Płocku. Politechnika Warszawska, Wydział Budownictwa, Mechaniki i Petrochemii, Instytut Budownictwa, 265 s., ISBN 978-83-946540-8-5, Płock 2022.
  38. Gryszpanowicz P. Projekt budowlany ulicy Kościuszki w Płocku, Płock 2021.
  39.  Obwieszczenie Ministra Infrastruktury z 9 września 2019 r. w sprawie ogłoszenia jednolitego tekstu rozporządzenia Ministra Infrastruktury w sprawie szczegółowych warunków technicznych dla znaków i sygnałów drogowych oraz urządzeń bezpieczeństwa ruchu drogowego i warunków ich umieszczania na drogach (Dz.U. 2019 poz. 2311).
dr inż. Konrad J. Waluś, Politechnika Poznańska, Wydział Inżynierii Mechanicznej ORCID: 0000-0001-5567-0317
dr inż. Piotr Gryszpanowicz, Politechnika Warszawska, Wydział Budownictwa, Mechaniki i Petrochemii w Płocku ORCID: 0000-0003-1355-7732
dr hab. inż. Barbara Rymsza, prof. IBDiM, Instytut Badawczy Dróg i Mostów ORCID: 0000-0002-0504-2360

dr hab. inż. Barbara Rymsza, prof. IBDiM, Instytut Badawczy Dróg i Mostów ORCID: 0000-0002-0504-2360

brymsza@ibdim.edu.pl

Full paper:

DOI: 10.15199/33.2023.04.03

Article in PDF file