The active confinement of reinforced concrete columns using shape memory materials


openaccess, Vol. 639 (11) 2025 / piątek, 21 listopada, 2025

Aktywne skrępowanie słupów żelbetowych przy użyciu materiałów z pamięcią kształtu

(Open Access)

DOI: 10.15199/33.2025.11.02

citation/cytuj: Rogowski J., Kołodziejczyk E., Waśniewski T., Kotynia R. The active confinement of reinforced concrete columns using shape memory materials. Materiały Budowlane. 2025. Volume 639. Issue 11. Pages 9-22. DOI: 10.15199/33.2025.11.02

The article reviews the state of the art in active confinement of RC columns using shape memory alloys (SMA). The previous research in this area showed that confinement with SMAhad a positive effect on the deformability and capacity of the elements. In conclusion, future research directions were identified for the influence of concrete strength and reinforcement ratio, the anchoring method of SMA reinforcement, SMA relaxation, and the column slenderness on the effectiveness of the method.

Artykuł stanowi przegląd stanu wiedzy dotyczącej aktywnego skrępowania słupów żelbetowych przy użyciu materiałów z pamięcią kształtu (SMA– z ang. Shape Memory Alloy). Wcześniejsze badania wykazały, że skrępowanie przez SMA wpłynęło pozytywnie na odkształcalność i nośność elementów. W podsumowaniu wskazano kierunki dalszych badań dotyczących wpływu wytrzymałości betonu i stopnia zbrojenia, sposobu kotwienia zbrojenia SMA, relaksacji SMA, a także wpływu smukłości słupów na efektywność metody.
active confinement; shape memory alloys; reinforced concrete column; SMA; strengthening.

aktywne skrępowanie; materiał z pamięcią kształtu; słup żelbetowy; SMA; wzmacnianie.
  1. UrbanT.WzmacnianieKonstrukcjiŻelbetowychMetodamiTradycyjnymi;1st ed.; Wydawnictwo Naukowe PWN:Warszawa, 2015; ISBN 978-83-01-18185-7.
  2. Trapko T, Musiał M. Strains of Eccentrically Compressed RC Columns Strengthened with CFRP Sheets and Strips. Journal of Materials Science and Engineering. 2010; 4, 6268.
  3.  Trapko T. Nowoczesne Metody Wzmacniania Słupów Żelbetowych z Zastosowaniem Materiałów CFRP. In Proceedings of the Dni Betonu; Kraków. 2008.
  4. Ignatowski P, Kamińska M, Kotynia R. Experimental Research on CFRP Confined RC Members/Badania Doświadczalne Elementów Ściskanych Wzmocnionych Materiałami Kompozytowymi CFRP; 2003.
  5. Valasaki K, Papakonstantinou CG. Fiber Reinforced Polymer (FRP) Confined Circular Concrete Columns:An Experimental Overview. Buildings. 2023. DOI: 10.3390/buildings13051248.
  6. Ameli Z, D’Antino T, Carloni C.ANew Predictive Model for FRCM-Confined Columns:AReflection on the Composite Behavior at Peak Stress. Constr Build Mater. 2022. DOI: 10.1016/j. conbuildmat. 2022.127534.
  7.  Hasan HH, Georgescu P. Concrete Columns Strengthened with Fibre Reinforced Cementious Matrix (FRCM). Mathematical Modelling in Civil Engineering. 2021. DOI: 10.2478/mcee-2021-0009.
  8. Drobiec Ł. Wzmacnianie konstrukcji żelbetowych z wykorzystaniem systemu FRCM. Materiały Budowlane. 2023; 7, 56 – 59.
  9. Saatcioglu M, Asce M, Yalcin C. External Prestressing Concrete Columns for Improved Seismic Shear Resistance. Journal of Structural Engineering. 2003. DOI: 10.1061/ASCE0733-94452003129:81057.
  10. Wang Q, Liu X, LiuY, Liang X, Lu C.Axial Stress-Strain Behavior of Pre- Stressed CFRP Confined Concrete Columns. Constr Build Mater. 2024. DOI: 10.1016/j.conbuildmat.2024.138003.
  11.  Ji J, Han T, Dong Z, Zhu H,Wu G,WeiY, Soh CK. Performance of Concrete Columns Actively Strengthened with Hoop Confinement: A State-of-the-Art Review. Structures. 2023; 54, 461–477.
  12.  Janke L, Czaderski C, Motavalli M, Ruth J.Applications of Shape Memory Alloys in Civil Engineering Structures – Overview, Limits and New Ideas. Materials and Structures/Materiaux et Constructions. 2005.DOI: 10.1617/14323.
  13.  Lagoudas D, Kumar PK. Introduction to Shape MemoryAlloys. In Shape memory alloys: modeling and engineering applications; Lagoudas D. C., Ed.; Springer. 2008; pp. 1-51. ISBN 978-0-387-47684-1.
  14.  Michels J, Shahverdi M, Czaderski C. Flexural Strengthening of Structural Concrete with Iron-Based Shape Memory Alloy Strips. Structural Concrete. 2018. DOI: 10.1002/suco. 201700120.
  15.  Zerbe L, Vieira D, Belarbi A, Senouci A. Uniaxial Compressive Behavior of Circular Concrete Columns Actively Confined with Fe-SMA Strips. Eng Struct. 2022. DOI: 10.1016/j.engstruct.2022.113878.
  16. Raza S, Shafei B, Saiid Saiidi M, Motavalli M, Shahverdi M. Shape Memory Alloy Reinforcement for Strengthening and Self-Centering of Concrete Structures – State of the Art. Constr Build Mater. 2022; doi: https://doi.org/10.1016/j. conbuildmat. 2022.126628.
  17.  Cladera A,Weber B, Leinenbach C, Czaderski C, Shahverdi M, Motavalli M. Iron-Based Shape Memory Alloys for Civil Engineering Structures: An Overview. Constr Build Mater. 2014; 63, 281 – 293.
  18.  Shahverdi M, Michels J, Czaderski C, Motavalli M. Iron-Based Shape Memory Alloy Strips for Strengthening RC Members: Material Behavior and Characterization. ConstrBuildMater. 2018.DOI: 10.1016/j.conbuildmat.2018.04.057.
  19. Rogowski, J.; Kotynia, R. State of theArt in Flexural Prestressing of RC Members with SMA Materials. In Life-Cycle of Structures and Infrastructure Systems; CRC Press. 2023; pp. 1050–1057.
  20.  Choi E, Chung YS, Cho BS, Nam TH. Confining Concrete Cylinders Using Shape Memory Alloy Wires. European Physical Journal: Special Topics. 200. DOI: 10.1140/EPJST/E2008-00684-0.
  21.  Suhail R, Amato G, McCrum DP. Active and Passive Confinement of Shape Modified Low Strength Concrete Columns Using SMA and FRP Systems. Compos Struct. 2020; https://doi.org/10.1016/j.compstruct.2020.112649.
  22.  Hong C, Qian H, Song G. Uniaxial Compressive Behavior of Concrete Columns Confined with Superelastic Shape Memory Alloy Wires. Materials. 2020. DOI: 10.3390/ma13051227.
  23.  Xu L, Zhu M, Zhao J, Chen M, Shi M. Axial Stress-Strain Behavior of Shape Memory Alloy Strips Constrained Concrete Columns. Structures. 2025. DOI: 10.1016/j.istruc.2025.108225.
  24.  Shin M, Andrawes B. Emergency Repair of Severely Damaged Reinforced Concrete Columns Using Active with Shape Memory Alloys. Smart Mater Struct. 2011. DOI: 10.1088/0964-1726/20/6/065018.
  25.  Abdelrahman K. Performance of Eccentrically Loaded Reinforced Concrete Columns Confined with Shape Memory Alloy Wires. PhD thesis, University of Calgary, Calgary, Alberta, Canada, 2017.
  26.  El-Hacha R, Abdelrahman K. Behaviour of Circular SMA-Confined Reinforced Concrete Columns Subjected to Eccentric Loading. Eng Struct. 2020; doi: https://doi.org/10.1016/j.engstruct. 2020.110443.
  27.  Choi E, Yang KT, Tae GH, Nam TH, Chung YS. Seismic Retrofit for RC Columns by NiTi and NiTiNb SMAWires. European Symposium on Martensitic Transformations. 2009. DOI: 10.1051/ESOMAT/200907005.
  28.  Qian H, Wu P, Ren Z, Chen G, Shi, Y. Pseudo-Static Tests of Reinforced Concrete Pier Columns Confined with Pre-Tensioned Superelastic Shape Memory Alloy Wires. Eng Struct. 2023. DOI: 10.1016/j.engstruct.2023.115680.
  29.  Jung D, Wilcoski J, Andrawes B. Bidirectional Shake Table Testing of RC Columns Retrofitted and Repaired with Shape Memory Alloy Spirals. Eng Struct. 018. DOI: 10.1016/j.engstruct.2017.12.046.
  30.  Kamal M, Shoeib AEK, Al. Megied MA, Hassan A. Experimental Investigation of Actively Confined RC Columns Using Iron-Based Shape Memory Alloy Spiral Stirrups. Civil Engineering and Architecture. 2022. DOI: 10.13189/cea. 2022.100714.
  31. Jeong S, KimKHE, LeeY,Yoo D, Hong K, Jung D. Compressive Behavior of Concrete Confined with Iron-Based ShapeMemoryAlloy Strips. Earthquake and Structures. 2022. DOI: 10.12989/eas.2022.23.5.431.
  32. Han T, Dong Z, Zhu H,Wu G, Zhao X. Compression Behavior of Concrete Columns Combinedly Confined by FRP Externally Wrapped Fe-SMAStrips. Eng Struct. 2023. DOI: 10.1016/j. engstruct. 2023.116754.
  33.  Sarmah M, Dutta A, Deb SK. Axial Stress – Strain Model for Concrete Actively Confined with Fe-SMA Strips. Journal of Materials in Civil Engineering. 2023, 35.
  34.  Han T, Dong Z, Zhu H, Wu G. Axial Compression Test on Strengthening Concrete Cylinders by Fe-SMA/FRP-HDPE Tube and Rubber Concrete Cladding Layer. Eng Struct. 2024. DOI: 10.1016/j.engstruct.2024.118380.
  35.  YeonY, Ji S, Hong K. Uniaxial Compressive Behavior of Concrete Column Actively Confined with Internal Fe-SMA Spirals. Constr Build Mater. 2024. DOI: 10.1016/j.conbuildmat.2024.135393.
  36.  Han T, Dong Z, Zhu H, Cui C, Zhao O. Compression Performance of FRP Externally Wrapped Fe-SMA Strips Confined Concrete Columns under Large Eccentric Load. Structures. 2025. DOI: 10.1016/j.istruc.2025.108554.
  37. HongH,Gencturk B, BelarbiA,Vieira,D.Active Confinement of Large-Scale Reinforced Concrete Columns Using Iron-Based Shape Memory Alloy (Fe- SMA) Strips. Journal of Building Engineering. 2025. DOI: 10.1016/j.jobe. 2025.112848.
  38.  Qiang X, WangK, TianW, JiangX.Hybrid Framework for Performance Evaluation of Fe-SMA Confined Concrete Columns: Numerical Simulation and Interpretable Machine Learning Model. Constr Build Mater. 2025. DOI: 10.1016/j.conbuildmat. 2025.141129.
  39.  Lee T, Jeong S, Woo U, Choi H, Jung D. Experimental Evaluation of Shape Memory Alloy Retrofitting Effect for Circular Concrete Column Using Ultrasonic PulseVelocity. Int J Concr StructMater. 2023. DOI: 10.1186/s40069-022-00574-0.
  40. Raza S, Widmann R, Michels J, Saiid Saiidi M, Motavalli M, Shahverdi M. Self-Centering Technique for Existing Concrete Bridge Columns Using Prestressed Iron-Based ShapeMemoryAlloy Reinforcement. Eng Struct. 2023. DOI: 10.1016/j.engstruct.2023.116799.
  41. VahediM, Zolfagharysaravi S, Ebrahimian H, Saiid SaiidiM. Experimental- -Analytical Investigation of Accelerated Bridge Construction Concrete Columns with Self-Centering Fe-SMA Bars Subjected to near-Fault Ground Motions. Eng Struct. 2024. DOI: 10.1016/j.engstruct.2023.117127.
  42. Raza S, Triantafyllidis Z, Anton A, Dillenburger B, Shahverdi M. Seismic Performance ofFe-SMA Prestressed Segmental Bridge Columnswith 3DPrintedPermanent Concrete Formwork. Eng Struct. 2024. DOI: 10.1016/j.engstruct.2023.117423.
  43. Jeong S, Kim KHE, Choi H, Ahn J, Jung D. Comparative Evaluation of Flexural Response and Damage Assessment of Concrete Columns Confined with CFRP and Self-Prestressing Iron-Based SMA. Journal of Building Engineering. 2024. DOI: 10.1016/j.jobe.2023.108228.
  44. Vieira D, Zerbe L, Belarbi A. Numerical Modeling of Iron-Based SMA Confined Concrete Columns under Axial Compressive Loading. Eng Struct. DOI: 10.1016/j.engstruct.2022.115185.
dr inż. Janusz Rogowski, Politechnika Łódzka, Wydział Budownictwa, Architektury i Inżynierii Środowiska
ORCID: 0000-0002-4080-5976
dr inż. Ewelina Kołodziejczyk, Politechnika Łódzka, Wydział Budownictwa, Architektury i Inżynierii Środowiska
ORCID: 0000-0002-3533-4145
dr inż. Tomasz Waśniewski, Politechnika Łódzka, Wydział Budownictwa, Architektury i Inżynierii Środowiska
ORCID: 0000-0001-7303-4920
prof. dr hab. inż. Renata Kotynia, Politechnika Łódzka, Wydział Budownictwa, Architektury i Inżynierii Środowiska
ORCID: 0000-0002-7247-1229

dr inż. Janusz Rogowski, Politechnika Łódzka, Wydział Budownictwa, Architektury i Inżynierii Środowiska
ORCID: 0000-0002-4080-5976

Correspondence address: janusz.rogowski@p.lodz.pl

Full paper:

DOI: 10.15199/33.2025.11.02

Article in PDF file

Received: 18.10.2024 / Artykuł wpłynął do redakcji: 18.10.2024 r.
Revised: 10.06.2025 / Otrzymano poprawiony po recenzjach: 10.06.2025 r.
Published: 21.11.2025 / Opublikowano: 21.11.2025 r.