Shrinkage of alkali-activated slag-fly ash concrete cured at ambient temperature


openaccess, Vol. 624 (8) 2024 / poniedziałek, 2 września, 2024

Skurcz betonu z aktywowanym alkalicznie spoiwem żużlowo-popiołowym pielęgnowanego w temperaturze otoczenia

(Open Access)

DOI: 10.15199/33.2024.08.01

citation/cytuj: Rodrigue A., Bissonnette B., Duchesne J., Fournier B. Shrinkage of alkali-activated slag-fly ash concrete cured at ambient temperature. Materiały Budowlane. 2024. Volume 624. Issue 8. Pages 1-4. DOI: 10.15199/33.2024.08.01

The paper summarizes the results of a study intended to characterize alkali-activated slag/fly ash concretes concerning their volume changes, freeze-thaw resistance, scaling resistance, and alkali-aggregate reactivity. The manifestation of early-age microcracking in the hardened alkali-activated paste phase of these concretes calls for attention. It is related to significant autogenous shrinkage, although it does not appear to agree with the other shrinkagemeasurements performed in the experimental program. Smaller pores and high sodiumion concentration result in higher internal pressure during the process of self-desiccation and could be the main causes for the very high autogenous shrinkage values recorded.

W artykule przedstawiono wyniki badań betonu z alkalicznym spoiwem żużlowo-popiołowym. Oznaczono zmianę objętości, odporność na cykle zamrażania-rozmrażania, w tym na złuszczanie, oraz reaktywność alkaliczno-krzemianową. Zwrócono uwagę na występowanie mikropęknięć w stwardniałym zaczynie we wczesnym wieku. Wysunięto hipotezę, że jest to związane ze znacznym skurczem autogenicznym, jakkolwiek inne pomiary skurczu, przeprowadzone w programie badawczym, nie potwierdzają tego mechanizmu. Małe pory i duże stężenie jonów sodu powodują wysokie ciśnienie wewnętrzne podczas wysychania i mogą być głównymi przyczynami dużych wartości skurczu autogenicznego zarejestrowanych w badaniach.
alkali-activated materials; fly ash; shrinkage; slag.

materiały aktywowane alkalicznie; popiół lotny; skurcz; żużel.
  1. McLellan BC, Williams RP, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. of Clean. Prod. 2011; 19(9-10): 1080 – 1090.
  2. Bernal SA, Mejía De Gutiérrez R., et al.Effect of binder content on the performance of alkali-activated slag concretes. Cem. and Conc. Res. 2011; 41 (1): 1 – 8.
  3. Fang G, Ho WK, et al. Workability andmechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Construction and BuildingMaterials. 2018; 172: 476–487.
  4. MaY,Ye G. The shrinkage of alkali activated fly ash. Cem. and Conc. Res. 2015; 68: 75–82.
  5. Rodrigue A. Optimisation et durabilité des écobétons alcali-activés incorporant des laitiers de haut- -fourneau et des cendres volantes, Ph.D. Thesis, Laval University, Québec (Canada). 175 p.
  6. Rodrigue,A., Bissonnette, et al.,Shrinkage of alkaliactivated combined slag and fly ash concrete cured at ambient temperature,ACIMat. J., 119(3), 15-23 (2022).
  7. Provis JL, MyersR. J et al.:X-raymicrotomography shows pore structure and tortuosity in alkali-activated binders. Cem. and Conc. Res. 2012; 42 (6): 855 – 864.
  8. Gao X,Yu QL et al.:Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model. Const. and Build. Mat. 2016; 119: 175 – 184.
  9. Ballekere Kumarappa D, Peethamparan S et al.: Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods. Cem. and Conc. Res., 109, 1–9 (2018).
  10. Ye H, Radlińska A. Fly ash-slag interaction during alkaline activation: Influence of activators on phase assemblage and microstructure formation. Const. and Build. Mat. 2016; 122: 594–606).
  11. Bernal SA, Provis JL et al. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem. and Conc. Res. 2013; 53: 127 – 144.
  12. Rodrigue A, Duchesne J et al. Influence of added water andflyashcontentonthe characteristics,properties and early-age cracking sensitivity of alkali-activated slag/flyashconcretecuredatambient temperature.Const. and Build.Mat. 2018; 171: 929 – 941.
  13. Provis JL, vanDeventer JSJ.AlkaliActivatedMaterials. RilemState-of-the-ArtReports, Springer. 2014.
dr Alexandre Rodrigue, Hydro-Québec, Baie-Comeau (QC), Canada
ORCID: 0000-0003-4911-4159
prof. Benoit Bissonnette, Laval University, Department of Civil Engineering and Water Engineering, Quebec City (QC), Canada
ORCID: 0000-0001-6555-3966
prof. Josée Duchesne, Laval University, Department of Geology and Geological Department, Quebec City (QC), Canada
ORCID: 0000-0002-6327-4864
prof. Benoit Fournier, Laval University, Department of Geology and Geological Department, Quebec City (QC), Canada
ORCID: 0000-0003-1469-4755

prof. Benoit Bissonnette, Laval University, Department of Civil Engineering and Water Engineering, Quebec City (QC), Canada
ORCID: 0000-0001-6555-3966

Corespondence address: benoit.bissonnette@gci.ulaval.ca

Full paper:

DOI: 10.15199/33.2024.08.01

Article in PDF file

Received: 20.05.2024
Revised: 28.06.2024
Published: 21.08.2024