Zastosowanie odpadów z łopat turbin wiatrowych w kompozytach cementowych
(Open Access)
DOI: 10.15199/33.2025.12.06
citation/cytuj: Jasińska D., Dutkiewicz M. Application of waste turbine blades in cementitious composite. Materiały Budowlane. 2025. Volume 640. Issue 12. Pages 44-53. DOI: 10.15199/33.2025.12.06
- Abstract / Streszczenie
- Keywords / Słowa kluczowe
- Literature
- Afiliation
- Corresponding Author
- Open Access
This article discusses issues related to cementitious composites with the addition of waste fibres and fibres produced during the manufacturing process.. The benefits of using fibres, examples of waste fibres, and conclusions on the effectiveness of using shredded wind turbine blades in cement composites are presented. Fibers from waste wind turbine blades can serve as a component in cement composites (Engineered Cementitious Composites – ECC).
W artykule omawiane są zagadnienia związane z kompozytami cementowymi z dodatkiem włókien odpadowych i wytwarzanych w procesie produkcji. Przedstawiono korzyści wynikające ze stosowania włókien, przykłady włókien odpadowych oraz przedstawiono wnioski z zakresu efektywności stosowania rozdrobnionych łopat turbin wiatrowych w kompozytach cementowych. Włókna z odpadów łopat turbin wiatrowych mogą stanowić składnik kompozytów cementowych (z ang. Engineered Cementitious Composites – ECC).
W artykule omawiane są zagadnienia związane z kompozytami cementowymi z dodatkiem włókien odpadowych i wytwarzanych w procesie produkcji. Przedstawiono korzyści wynikające ze stosowania włókien, przykłady włókien odpadowych oraz przedstawiono wnioski z zakresu efektywności stosowania rozdrobnionych łopat turbin wiatrowych w kompozytach cementowych. Włókna z odpadów łopat turbin wiatrowych mogą stanowić składnik kompozytów cementowych (z ang. Engineered Cementitious Composites – ECC).
modified cementitious composites; Engineered Cementitious Composite; fibers; turbine blades; strength.
modyfikowane kompozyty cementowe; włókna; łopaty turbin wiatrowych; wytrzymałość.
modyfikowane kompozyty cementowe; włókna; łopaty turbin wiatrowych; wytrzymałość.
- Krishnaraja AR, Kandasamy S. Mechanical Properties of Engineered Cementitious Composites. Int. J. Chem. Tech. Res. 2017; vol. 10, no. 8, pp. 341–347.
- KrishnarajaAR, Kandasamy S. Flexural performance of engineered cementitious composite layered reinforced concrete beams. Arch. Civ. Eng. 2017, vol. 63, no. 4, pp. 173–189.
- Ahmeda SFU, aMaalejM. Tensile strain hardening behaviour of hybrid steel- polyethylene fibre reinforced cementitious composites. Constr. Build. Mater. 2009; vol. 23, no. 1, pp. 96–106.
- Ming Y, Chen P, Li L, Gan G, Pan G. A Comprehensive Review on the Utilization of RecycledWaste Fibers in Cement-Based Composites. Materials. 2021. DOI: 10.3390/ma14133643.
- Mohamad IbrahimN et al. Investigating the Effect of SteelWire and Carbon Black from Worn Out Tyre on the Strength of Concrete. Int. J. Nanoelectron. Mater. 2024. DOI: 10.58915/ijneam.v17i4.1286.
- Augustino S, Onchiri RO, Kabubo C, Kanali C. Mechanical and durability performance of high-strength concrete with waste tyre steel fibres,. Adv. Civ. Eng. 2022. DOI: 10.1155/2022/4691972.
- Pilakoutas K, Neocleous K, Tlemat H. Reuse of tyre steel fibres as concrete reinforcement. Proc. ICE Eng. Sustain. 2004. DOI: 10.1680/ensu. 2004.157.3.131.
- Chen M, Si H, Fan X, Xuan Y, Zhang M. Dynamic compressive behaviour of recycled tyre steel fibre reinforced concrete. Constr. Build.Mater. 2021. DOI: 10.1016/j.conbuildmat.2021.125896.
- Michalik A. Efektywność zbrojenia betonu oczyszczonymi włóknami z recyklingu opon. Ph. D. dissertation, Instytut Techniki Budowlanej. 2023.
- WangY,WuH, LiV.ConcreteReinforcementwithRecycled Fibers:AReview. J. Mater. Civ. Eng. 2000.DOI: 10.1061/(ASCE) 0899-1561 (2000) 12: 4 (314).
- T. Ran, J. Pang, and D. Wu, “Experimental study on recycling rubber to increase the impact resistance of cement mortar,” Sci. Rep., vol. 14, Art. no. 25230, 2024, doi: 10.1038/s41598-024-73834-6.
- Mirsadeghi MN, Masrour FF, Mola Abasi H, Karakouzian M, Libre N. A feasible reuse of waste surgical face mask fibers in reinforcement of widerange cemented sand with various porosities. Int. J. Geosynthetics Ground Eng. 2024. DOI: 10.1007/s40891-024-00570-2.
- Kilmartin-Lynch S, SaberianM, Li J, Roychand R, Zhang G. Preliminary evaluation of the feasibility of using polypropylene fibres from COVID-19 single-use face masks to improve the mechanical properties of concrete. J. Clean. Prod. 2021. DOI: 10.1016/j.jclepro.2021.126460.
- Ningrum D, Soehardjono A, Suseno H, Wibowo A. Analysis of the effect of using COVID-19medicalmask waste with polypropylene on the compressive strength and split tensile strength of high-performance concrete. East.-Eur. J. Enterp. Technol. 2023. DOI: 10.15587/1729-4061.2023.272529.
- Awal ASMA, Mohammadhosseini H, Jumaat MZ. Concrete incorporating disposable mask fiber and nano-silica: Mechanical and microstructural properties. Constr. Build. Mater. 2023. DOI: 10.1016/j.conbuildmat.2023.128661.
- Ochi T, Okubo S, Fukui K. Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement & Concrete Composites. 2007. [Online]. Available: https://doi.org/10.1016/j.cemconcomp.2007.02.002.
- Fraternali F,CianciaV,ChechileR,RizzanoG, Feo L, Incarnato L. Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Composite Structures. 2011. DOI: 10.1016/j.compstruct.2011.03.025.
- Marthong C, Sarma DK. Influence of PET fiber geometry on the mechanical properties of concrete: an experimental investigation. European Journal of Environmental and Civil Engineering. 2015. DOI: 10.1080/19648189.2015.1072112.
- Abdulateef LA,Hassan SH,AhmedAM. Exploring themechanical behavior of concrete enhanced with fibers derived from recycled plastic bottles.Advances in Engineering Technology and Applied Sciences Research. 2024. DOI: 10.48084/etasr.6895.
- C. Signorini C, Volpini V. Mechanical performance of fiber reinforced cement composites including fully-recycled plastic fibers. Fibers. 2021. DOI: 10.3390/fib9030016.
- Karanth SS, Ghorpade VG, Rao HS. Shear and impact strength of waste plastic fibre reinforced concrete. Advances in Concrete Construction. 2017. [Online]. Available: https://doi.org/10.12989/acc.2017.5.2.173.
- Jasińska D, Dutkiewicz M. Waste management of wind turbine blades –A review of recycling methods and applications in cementitious composites. Sustainability. 2025. DOI: 10.3390/su17030805.
- Cousins D, Suzuki Y, Murray R, Samaniuk J, Stebner A. Recycling glass fiber thermoplastic composites from wind turbine blades. Journal of Cleaner Production. 2018. DOI: 10.1016/j.jclepro.2018.10.286.
- Liu P, Barlow CY. Wind turbine blade waste in 2050.Waste Management. 2017. DOI: 10.1016/j.wasman.2017.02.007. [25]
- frommechanically recycledwind turbine blades. Resources, Conservation and Recycling. 2018. DOI: 10.1016/j.resconrec. 2017.08.005.
- Abdo M, Toumpanaki E, Diambra A, Comandini G, Bank L. Evaluation of mechanical properties of concrete with recycled FRP wind blade waste material, in Proc. 11th Int. Conf. Fiber-Reinforced Polymer (FRP) Composites in Civil Engineering, Rio De Janeiro, Brazil, 2023.
- V. Revilla-Cuesta, M. Skaf, V. Ortega-López, and J. M. Manso, “Rawcrushed wind-turbine blade: waste characterization and suitability for use in concrete production,” Resources, Conservation and Recycling, 2023. doi: 10.1016/j.resconrec.2023.107160.
- Ortega-López V, Faleschini F, Hurtado-Alonso N, Manso-Morato JM, Revilla-Cuesta V. Analysis of raw-crushed wind-turbine blade as an overall concrete addition: stress-strain and deflection performance effects. Composite Structures. 2024. DOI: 10.1016/j.compstruct.2024.118170.
- Revilla-Cuesta V, Manso-Morato J, Hurtado-Alonso N, Skaf M, Ortega- López V. Mechanical and environmental advantages of the revaluation of rawcrushed wind-turbine blades as a concrete component. Journal of Building Engineering. 2024. DOI: 10.1016/j.jobe.2023.108383.
- Baturkin D, Hisseine OA, Masmoudi R, Tagnit-Hamou A, Massicotte L. Valorization of recycled FRP materials, 2021. [Online]. Available: https://doi.org/10.1016/j.resconrec.2021.105807.
- Sorathiya S, Patel, NR, Pitroda J.Atechno economical study on wind turbine blade waste as replacement of natural coarse aggregates in concrete. International Journal ofConstructiveResearch inCivil Engineering (IJCRCE). 2017. [Online]. Available: http://dx.doi.org/10.20431/2454-8693.0301004.
- Pławecka K, Przybyła J, Korniejenko K, Lin W-T, Cheng A, Łach M. Recycling of mechanically ground wind turbine blades as filler in geopolymer composite. Materials. 2021. DOI: 10.3390/ma14216539.
- Pepera R, Shafei B.Advancing Toward Net Zero: The Role of Fibers in Sustainable Concrete Construction, in The 1st Int. Conf. on Net-Zero Built Environment, NTZR 2024,M. Kioumarsi and B. Shafei, Eds. Cham: Springer. 2025, Lecture Notes in Civil Engineering. DOI: 10.1007/978-3-031-69626-8_31.
- Kazemian M, Shafei B. Carbon sequestration and storage in concrete: A state-of-the-art review of compositions, methods, and developments. J. CO2 Util. 2023. DOI: 10.1016/j.jcou.2023.102443.
- NASA The atmosphere: Getting a handle on carbon dioxide, https://science.nasa.gov/earth/climate-change/greenhouse-gases/theatmosphere- getting-a-handle-on-carbon-dioxide/ [DOSTĘP 18.07.2025].
- Wu S, Shao Z, Andrew RM et al. Global CO2 uptake by cement materials accounts 1930–2023. Sci Data. 2024. DOI: 10.1038/s41597-024-04234-8.
- Scrivener K, Vanderley J, Gartner E. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res.n2018. DOI: 10.1016/j.cemconres.2018.03.015.
- Krishnaraja AS, Anandakumar S, Jegan M. Mechanical performance of hybrid engineered cementitious composites. Cement Wapno Beton. 2018; vol. 23, no. 6, pp. 479–486.
- Arivusudar N, S. Babu S.Mechanical properties of engineered cementitious composites developed with silica fume. Cement-Wapno-Beton. 2020. DOI: 10.32047/CWB.2020.25.4.3.
- Zhang J, Li VC, Nowak A,Wang S. Introducing Ductile Strip for Durability Enhancement of Concrete Slabs.ASCE J. Mater. Civ. Eng., accepted 2001.
- Li VC, Wang S, Wu C. Tensile Strain-Hardening Behavior of PVAECC. ACI J. Mater., submitted Jan. 2001.
- Mukhopadhyay S, Khatana S. A review on the use of fibers in reinforced cementitious concrete. J. Ind. Text. 2015. DOI: 10.1177/1528083714529806.
- García Santos A, Ma. Rincón J, Romero M, Talero R. Characterization of a polypropylene fibered cement composite using ESEM, FESEMandmechanical testing. Constr. Build. Mater. 2005. DOI: 10.1016/j.conbuildmat.2004.07.023.
- Chen W, Ji X, Huang Z. Influence of fiber type on mechanical properties of lightweight cement-based composites. Sci. Eng. Compos.Mater. 2021. DOI: 10.1515/secm-2021-0021.
- DuW,Yu F, Qiu L, GuoY,Wang, J, Han B. Effect of Steel Fibers on Tensile Properties of Ultra-High-Performance Concrete: A Review. Materials. 2024. DOI: 10.3390/ma17051108.
- Pakravan HR, Latifi M, Jamshidi M Hybrid short fiber reinforcement system in concrete:Areview.Constr.Build.Mater.2017.DOI:10.1016/j.conbuildmat.2017.03.059.
- Faruk O, Bledzki AK, Fink H-P, Sain M. Biocomposites reinforced with natural fibers: 2000 – 2010. Prog. Polym. Sci. 2012. DOI: 10.1016/j.progpolymsci.2012.04.003.
- Kaith BS, Mittal H, Jindal R, Maiti MJ, Kalia S. Cellulose Fibers: Bio- and Nano-Polymer Composites, in Polymer Composites. 2011. DOI: 10.1007/978-3-642-17370-7_16.
- Singh A, Yadav BP. Sustainable innovations and future prospects in construction material: a review on natural fiber-reinforced cement composites. Environ. Sci. Pollut. Res. 2024. DOI: 10.1007/s11356-024-35236-z.
- Aydın H, ŞensesM, BayramŞ. CalciteAdded PP Fiber Production. Orclever Proceedings of Research and Development. 2024. DOI: 10.56038/oprd.v5i1.591.
- Joshi S, Drzal L, Mohanty A, Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. A Appl. Sci. Manuf. 2004. DOI: 10.1016/j.compositesa.2003.09.016.
- PN-EN 196-1 Metody badania cementu – Część 1: Oznaczanie wytrzymałości, Polski Komitet Normalizacyjny.
- PN-EN 1015-1 Badania zapraw – Część 1: Pobieranie próbek, przygotowanie i konserwacja próbek oraz określanie zgodności, Polski Komitet Normalizacyjny.
- Akçaözoğlu S, Adıgüzel AO, Akçaözoğlu K, Deveci EÜ, Gönen Ç. Investigation of the bacterial modified waste PET aggregate VIA Bacillus safensis to enhance the strength properties ofmortars. Construction and Building Materials. 2021; vol. 270, p. 121885.
- Çelikten S, Sarıdemir M, Soloğlu M. Effects of elevated temperatures and cooling regimes on thewaste andesite dust-based geopolymermortars. Construction and Building Materials. DOI: 10.1016/j.conbuildmat.2024.135857.
- Marciniak B. Badania i analiza wytrzymałości na ściskanie betonów różnego rodzaju wyznaczanej na próbkach prostopadłościennych, Praca dyplomowa magisterska, Wydział Budownictwa i Architektury, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, luty 2017.
mgr inż. Daria Jasińska, Politechnika Bydgoska, Wydział Budownictwa, Architektury i Inżynierii Środowiska
ORCID: 0000-0002-9075-795X
dr hab. inż. Maciej Dutkiewicz, prof. PBŚ, Politechnika Bydgoska, Wydział Budownictwa, Architektury i Inżynierii Środowiska
ORCID: 0000-0001-7514-1834
ORCID: 0000-0002-9075-795X
dr hab. inż. Maciej Dutkiewicz, prof. PBŚ, Politechnika Bydgoska, Wydział Budownictwa, Architektury i Inżynierii Środowiska
ORCID: 0000-0001-7514-1834
mgr inż. Daria Jasińska, Politechnika Bydgoska, Wydział Budownictwa, Architektury i Inżynierii Środowiska
ORCID: 0000-0002-9075-795X
Correspondence address: daria.jasinska@pbs.edu.pl
Received: 15.07.2025 / Artykuł wpłynął do redakcji: 15.07.2025 r.
Revised: 23.09.2025 / Otrzymano poprawiony po recenzjach: 23.09.2025 r.
Published: 23.12.2025 / Opublikowano: 23.12.2025 r.
