Analysis of selected properties of cement composites based on polystyrene waste


openaccess, Vol. 635 (7) 2025 / wtorek, 22 lipca, 2025

Analiza wybranych właściwości kompozytów cementowych zawierających odpady styropianowe

(Open Access)

DOI: 10.15199/33.2025.07.07

citation/cytuj: Kuźmińska E., Zakrzewski M., Domski J. Analysis of selected properties of cement composites based on polystyrene waste. Materiały Budowlane. 2025. Volume 635. Issue 07. Pages 46-55. DOI: 10.15199/33.2025.07.07

The aim of this study was to evaluate the influence of the type of polystyrene regranulate and the composition of the cement mixture on the mechanical properties of lightweight cementitious composites. Three types of regranulates were considered: a mixture of EPS/XPS (materialA) and two variants of XPS (materials B and C), applied in three formulations (I–III), differing in their binder and waste sand content. Due to the limited number of global studies addressing the use of XPS regranulates in concrete mixtures, particular attention was given to their behavior within the cementitious matrix. The tests were conducted on cubic samples with a side length of 150 mm and cylindrical specimens with a diameter of 150 mm and a height of 300 mm, in accordance with PN-EN 12390-3. The best mechanical performance was achieved by composites containing XPS and sand. Mixtures incorporatingmaterialAexhibited lower strength and higher deformability. The results highlight the significant potential of XPS regranulate as a component of lightweight cementitious composites

Celem pracy prezentowanej w artykule była ocena wpływu rodzaju regranulatu polistyrenowego oraz składu mieszanki cementowej na właściwości mechaniczne lekkich kompozytów cementowych. Uwzględniono trzy typy regranulatów: mieszaninę EPS/XPS (materiał A) oraz dwa warianty XPS (materiały B i C), stosowane w trzech recepturach (I–III), różniących się zawartością spoiwa i piasku odpadowego. Ze względu na ograniczoną liczbę badań w literaturze światowej dotyczących zastosowania regranulatów XPS w mieszankach betonowych, szczególną uwagę poświęcono jego zachowaniu w kompozycie cementowym. Badania przeprowadzono na próbkach sześciennych o długości boku 150 mm oraz walcach o średnicy 150 mm i wysokości 300 mm, zgodnie z PN-EN 12390-3. Najlepsze parametry wytrzymałościowe osiągnęły kompozyty z XPS i dodatkiem piasku. Mieszanki z materiałem A wykazały niższą wytrzymałość i większą odkształcalność. Wyniki wskazują na istotny potencjał regranulatu XPS jako składnika lekkich kompozytów cementowych.
XPS composite; XPS regranulate; mechanical properties.

kompozyt XPS; regranulat XPS; właściwości mechaniczne.
  1. Cui C, Huang Q, Li D, Quan C, Li H. Stress-strain relationship in axial compression forEPSconcrete.ConstrBuildMater.2016.DOI:10.1016/j.conbuildmat.2015.12.159.
  2. Prasittisopin L, Termkhajornkit P, KimYH. Review of concrete with expanded polystyrene (EPS): Performance and environmental aspects. Elsevier Ltd. 2022. DOI: 10.1016/j. jclepro. 2022.132919.
  3.  Xu Y, Jiang L, Xu J, Li Y. Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick. Constr Build Mater. 2012. DOI: 10.1016/j. conbuildmat. 2011.08.030.
  4. XuY, Jiang L, Liu J, ZhangY, Xu J, He G. Experimental study and modeling on effective thermal conductivity of EPS lightweight concrete. Journal of Thermal Science and Technology. 2016. DOI: 10.1299/jtst. 2016jtst0023.
  5. Vakhshouri B, Nejadi S. Reviewon themixture design andmechanical properties of the lightweight concrete containing expanded polystyrene beads. Taylor and Francis Ltd. 2018.DOI: 10.1080/13287982.2017.1353330.
  6.  Rucińska T,Kiernożycki W. Odkształcalność ściskanego osiowo betonu z kruszywem styropianowym. 2014.
  7.  Nikbin IM, Golshekan M. The effect of expanded polystyrene synthetic particles on the fracture parameters, brittleness andmechanical properties of concrete.Theoretical and Applied Fracture Mechanics. 2018. DOI: 10.1016/j. tafmec. 2018.02.002.
  8.  Liu H et al. Experimental Scrutiny of Uniaxial Compressive Stress – Strain Relationship for Expanded Polystyrene Concrete. Iranian Journal of Science and Technology – Transactions of Civil Engineering. DOI: 10.1007/s40996-023-01112-y.
  9.  Miled K, Le Roy R, Sab K, Boulay C. Compressive behavior of an idealized EPS lightweight concrete: Size effects and failure mode. Mechanics of Materials. 2004. DOI: 10.1016/j.mechmat.2003.08.004.
  10. Babavalian A, Ranjbaran AH, Shahbeyk S. Uniaxial and triaxial failure strength of fiber reinforced EPS concrete. Constr Build Mater. 2020. DOI: 10.1016/j. conbuildmat. 2020.118617.
  11.  Han J, FanH.Dynamic properties of low-density expandable polystyrene concrete materials. Defence Technology. DOI: 10.1016/j. dt.2024.07.006.
  12.  LiuYet al., Dynamic response of expanded polystyrene concrete during low-speed impact. Constr BuildMater. 2016.DOI: 10.1016/j.conbuildmat. 2016.06.059.
  13.  Mohammed HJ, Aayeel OK. Flexural behavior of reinforced concrete beams containing recycled expandable polystyrene particles. Journal of Building Engineering. 2020. DOI: 10.1016/j.jobe.2020.101805.
  14. Petrella A, Di Mundo R, Notarnicola M. Recycled expanded polystyrene as lightweight aggregate for environmentally sustainable cement conglomerates. Materials. 2020. DOI: 10.3390/ma13040988.
  15. Wwjmrd. OptimizingThe Flexural and SplitTensile Strength Properties of Polystyrene Concrete Using the Osadebe’s Model:A Mathematical Approach to Sustainable Environmental and Housing Development. International Journal Peer Reviewed Journal Refereed Journal Indexed Journal Impact Factor SJIF, vol. 7, no. 12, pp. 2020–2021, 2021. DOI: 10.17605/OSF. IO/UQ25Y.
  16. Liu N, Chen B. Experimental study of the influence of EPS particle size on the mechanical properties of EPS lightweight concrete. Constr Build Mater. 2014. DOI: 10.1016/j. conbuildmat. 2014.06.062.
  17. Major M, Halbiniak J. Effect of adhesion between eps granules and cementmatrix onthe characteristicsof lightweight concretes, inIOPConferenceSeries:MaterialsScience and Engineering, Institute of Physics Publishing. 2019. DOI: 10.1088/1757- 899X/603/3/032054.
  18.  Maaroufi M, Abahri K, Hachem CEl, Belarbi R. Characterization of EPS lightweight concreto microstructure byX-ray tomographywith consideration of thermal variations .Constr Build Mater. 2018.DOI: 10.1016/j.conbuildmat.2018.05.142.
  19.  Kaya A, Kar F. Properties of concrete containing waste expanded polystyrene and natural resin. Constr Build Mater. 2016.DOI: 10.1016/j.conbuildmat. 2015.12.177.
  20.  Li Y, Liu N, Chen B. Properties of lightweight concrete composed of magnesia phosphate cement and expanded polystyrene aggregates.Materials and Structures/Materiaux et Constructions. 2015. DOI: 10.1617/s11527-013-0182-6.
  21.  Tang WC, Lo Y, Nadeem A. Mechanical and drying shrinkage properties of structural-graded polystyrene aggregate concrete. Cem Concr Compos. 2008. DOI: 10.1016/j.cemconcomp.2008.01.002.
  22.  Maghfouri M et al. Drying shrinkage properties of expanded polystyrene (EPS) lightweight aggregate concrete:Areview. Case Studies in ConstructionMaterials. 2022. DOI: 10.1016/j. cscm.2022.e00919.
  23.  Adhikary S, Kand D. K.Ashish. Turning waste expanded polystyrene into lightweight aggregate: Towards sustainable construction industry. Science of the Total Environment. 2022. DOI: 10.1016/j.scitotenv. 2022.155852.
  24.  Chung SY, Abd Elrahman M, Stephan D. Effects of expanded polystyrene (EPS) sizes and arrangements on the properties of lightweight concrete. Materials and Structures/Materiaux et Constructions. 2018. DOI: 10.1617/s11527-018-1182-3.
  25.  Khatib JM, Herki BA, ElkordiA. Characteristics of concrete containing EPS, in Use of Recycled Plastics in Eco-efficient Concrete, Elsevier. 2018. DOI: 10.1016/B978-0-08-102676-2.00007-4.
  26.  Jannaty MH, Atrushi D. Assessment of Curing Exposures Effect on the Long-term Engineering Properties of Novel Lightweight Aggregate Concrete. Aro-the Scientific Journal of Koya University. 2020. DOI: 10.14500/aro.10739.
  27.  Gomes R, Silvestre JD, de Brito J. Environmental life cycle assessment of the manufacture of EPS granulates, lightweight concrete with EPS and high-density EPS boards. Journal of Building Engineering. 2020. DOI: 10.1016/j.jobe. 2019.101031.
  28.  Argalis PP, Bumanis G, Bajare D. GypsumComposites withModifiedWaste Expanded Polystyrene. Journal of Composites Science. 2023. DOI: 10.3390/jcs7050203.
  29.  BrooksAL, Zhou H, Hanna D. Comparative study of themechanical and thermal properties of lightweight cementitious composites. Constr Build Mater. 2018. DOI: 10.1016/j.conbuildmat.2017.10.102.
  30.  Kan A, Demirboĝa R. A new technique of processing for waste-expanded polystyrene foams as aggregates. J Mater Process Technol. 2009. DOI: 10.1016/j.jmatprotec.2008.07.017.
  31. Bedeković G, Grčić I, AnićVučinićA, PremurV. Recovery ofwaste expanded polystyrene in lightweight concrete production. Rudarsko Geolosko Naftni Zbornik. 2019. DOI: 10.17794/rgn.2019.3.8.
  32. KanA, Demirboĝa R.Anovelmaterial for lightweight concrete production. Cem Concr Compos. 2009. DOI: 10.1016/j.cemconcomp.2009.05.002.
  33.  Chen B, Liu J. Properties of lightweight expanded polystyrene concrete reinforced with steel fiber. Cem Concr Res. 2004. DOI: 10.1016/j.cemconres. 2003.12.014.
  34. Li C, Miao L, You Q, Hu S, Fang H. Effects of viscosity modifying admixture (VMA) on workability and compressive strength of structural EPS concrete. Constr Build Mater. 2018. DOI: 10.1016/j.conbuildmat.2018.04.176.
  35.  Techniczne właściwości klasy poziomy. iX CPP20 KARTATECHNICZNA. [Online]. Available:www.holcim.pl/kontakt/.
  36.  He D, Zheng W, Chen Z, Qi Y, Zhang D, Li H. Influence of Paste Strength on the Strength of Expanded Polystyrene (EPS) Concrete with Different Densities. Polymers (Basel). 2022. DOI: 10.3390/polym14132529.
  37.  González-Betancur D, Hoyos-Montilla AA, Tobón JI. Sustainable Hybrid Light weight Aggregate Concrete Using Recycled Expanded Polystyrene. Materials. 2024. DOI: 10.3390/ma17102368.
  38.  Mohammed Umar U, Muthusamy K. Potential of Waste Material as Coarse Aggregates for Lightweight Concrete Production: A Sustainable Approach. Construction. 2023. DOI: 10.15282/construction.v3i1.9217.
  39.  Habibilah B, Widodo S. Experimental test on styrofoam waste addition as a partial substitute for fine aggregate to specific gravity, compressive strength, and modulus of concrete elasticity. Journal of Engineering and Applied Technology. 2022. DOI: 10.21831/jeatech.v3i1.42550.
  40.  Rathika S, Brindha Devi V, Premkumar R, Ranjith P, Dhilip Kumar. R. Experimental investigation on lightweight concrete by adding polystyrene beads.Mater Today Proc. 2023. DOI: 10.1016/j. matpr.2023.05.444.
  41. Miled K, Sab K, Le Roy R. Particle size effect on EPS lightweight concrete compressive strength: Experimental investigation and modelling. Mechanics of Materials. 2007. DOI: 10.1016/j.mechmat.2006.05.008.
MSc Eng. Elżbieta Kuźmińska, Koszalin University of Technology
ORCID: 0000-0002-9507-9756
PhD Eng. Mateusz Zakrzewski, Koszalin University of Technology
ORCID: 0000-0002-0419-5058
Assoc. Prof. PhD DSc Eng. Jacek Domski, prof. PK, Koszalin University of Technology
ORCID: 0000-0002-5112-1035

MSc Eng. Elżbieta Kuźmińska, Koszalin University of Technology
ORCID: 0000-0002-9507-9756

Correspondence address: elzbieta.kuzminska@tu.koszalin.pl

Full paper:

DOI: 10.15199/33.2025.07.07

Article in PDF file

Received: 04.03.2025. / Artykuł wpłynął do redakcji: 04.03.2025 r.
Revised: 10.04.2025. / Otrzymano poprawiony po recenzjach: 10.04.2025 r.
Published: 23.07.2025 / Opublikowano: 23.07.2025 r.