Strain distribution analysis in multilayered 3D printed beam during 3-point bending process


openaccess, Vol. 625 (9) 2024 / czwartek, 26 września, 2024

Analiza stanu odkształceń wielowarstwowych drukowanych belek betonowych poddawanych 3-punktowemu zginaniu

(Open Access)

DOI: 10.15199/33.2024.09.02

citation/cytuj: Skibicki Sz., Szewczyk P., Sibera D.  Strain distribution analysis in multilayered 3D printed beam during 3-point bending process. Materiały Budowlane. 2024. Volume 625. Issue 9. Pages 11-17. DOI: 10.15199/33.2024.09.02

The paper presents the results of testing 3D concrete samples, aimed at determining the impact of the effectiveness of interlayer bonding on the mechanical properties of the samples and the failure pattern (electrical resistivity strain gauge technique and digital image correlation (DIC) method were used). The tests showed that limiting the interlayer area led to a reduction in flexural strength by 37.4% and splitting strength by 52.2%.

Artykuł przedstawia wyniki badań próbek betonowych, wykonanych w technologii druku 3D, mających na celu określenie wpływu efektywności zespolenia międzywarstwowego na właściwości mechaniczne próbek oraz mechanizmu ich zniszczenia (wykorzystano technikę tensometrii elektrooporowej oraz metodę cyfrowej korelacji obrazu (DIC)). Badania wykazały m.in., że ograniczenie pola sczepności międzywarstwowej doprowadziło do zredukowania wytrzymałości na zginanie o 37,4% oraz na rozłupywanie o 52,2%.
3D concrete; 3D concrete printing; 3DCP; interlayer adhesion; additive manufacturing.

beton 3D; druk 3D betonu; sczepność międzywarstwowa; wytwarzanie przyrostowe.
  1. Wangler T et al. Digital Concrete: A Review. Cement and Concrete Research. 2019; 123: 105780.
  2. Ivanova I et al. Comparison between methods for indirect assessment of buildability in fresh 3D printed mortar and concrete. Cement and Concrete Research. 2022; 156: 106764.
  3.  Roussel N. Rheological requirements for printable concretes. Cement and Concrete Research. 2018; 112: 76 – 85.
  4. Perrot A et al. Structural built-up of cement-based materials used for 3D- -printing extrusion techniques. Mater Struct. 2016; 49 (4): 1213–20.
  5.  Ding T et al. Mechanical behavior of 3Dprintedmortarwith recycled sand at early ages. Construction and Building Materials. 2020; 248 (2005): 118654.
  6.  Tao Y et al. Shape stability of 3D printable concrete with river and manufactured sand characterized by squeeze flow. Cement and Concrete Composites. 2022; 133: 104674.
  7.  Li Z et al. Fresh and Hardened Properties of Extrusion-Based 3D-Printed Cementitious Materials: A Review. Sustainability. 2020; 12 (14): 5628.
  8.  Skibicki S et al. The effect of interlayer adhesion on stress distribution in 3D printed beam elements. Journal of Building Engineering. 2024; 87 (2): 109093.
  9. Zbyszyński Wet al. Data image correlation analysis of the destruction process of 3D printable layered beams subjected to the 3-point bending process. Theoretical and Applied Fracture Mechanics. 2023; 125 (03007): 103891.
  10.  Alchaar AS et al. Mechanical properties of 3D printed concrete in hot temperatures. Construction and Building Materials. 2021; 266 (1): 120991.
  11.  Luo S et al. Effects of interval time and interfacial agents on the mechanical characteristics of ultra-high toughnessnn cementitious composites under 3D-printed technology. Construction and Building Materials. 2023; 374 (8): 130936.
  12.  Chen Y et al. Effect of curing methods during a long time gap between two printing sessions on the interlayer bonding of 3D printed cementitiousmaterials. Construction and BuildingMaterials. 2022; 332 (1): 127394.
  13.  Skibicki S et al. Experimental Study of Hardened Young’s Modulus for 3D Printed Mortar. Materials (Basel). 2021; 14 (24).
  14.  EN 1015-11:2020.Methods of test for mortar for masonry – Part 11: Determination of flexural and compressive strength of hardened mortar.
  15.  Skibicki S et al. Potential of Reusing 3D Printed Concrete (3DPC) Fine Recycled Aggregates as a Strategy towards Decreasing Cement Content in 3DPC. Materials. 2024; 17 (11): 2580.
  16.  Al-Noaimat YA et al. Recycled brick aggregates in one-part alkali-activated materials: Impact on 3D printing performance and material properties. Developments in the Built Environment. 2023; 16: 100248.
  17.  EN 12390-6:2009. Testing hardened concrete – Part 6: Tensile splitting strength of test specimens.
  18.  Wolfs RJM et al. Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion. Cement and Concrete Research. 2019; 119: 132–40.
  19.  Pan T et al. Interlayer bonding investigation of 3D printing cementitious materials with fluidity-retaining polycarboxylate superplasticizer and high-dispersion polycarboxylate superplasticizer. Construction and Building Materials 2022; 330 (5): 127151
dr inż. Szymon Skibicki, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Budownictwa i Inżynierii Środowiska
ORCID: 0000-0002-2918-7759
dr inż. Piotr Szewczyk, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Budownictwa i Inżynierii Środowiska
ORCID: 0000-0002-2707-5630
dr inż. Daniel Sibera, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Budownictwa i Inżynierii Środowiska
ORCID: 0000-0001-7542-8093

dr inż. Szymon Skibicki, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Budownictwa i Inżynierii Środowiska
ORCID: 0000-0002-2918-7759

Corespondence address: szymon.skibicki@zut.edu.pl

Full paper:

DOI: 10.15199/33.2024.09.02

Article in PDF file

Received: 06.06.2024 / Wpłynął do redakcji: 06.06.2024 r.
Revised: 05.07.2024 / Otrzymano poprawiony po recenzjach: 05.07.2024 r.
Published: 23.09.2024 / Opublikowano: 23.09.2024 r.