Effect of dynamic impacts of rolling stock on the structural elements of the road viaducts located above the railway experimental track in Zmigrod


openaccess, Vol. 614 (10) 2023 / czwartek, 26 października, 2023

(Open Access)

DOI: 10.15199/33.2023.10.10

Wysokowski Adam, Szulc Waldemar. 2023. Effect of dynamic impacts of rolling stock on the structural elements of the road viaducts located above the railway experimental track in Zmigrod. Volume 614. Issue 10. Pages 48-53. Article in PDF file

Accepted for publication: 28.09.2023 r.

In the case of bridges, the impact of dynamic influences on their individual structural components is particularly important. The article aims to present the scale of this impact on the example of road viaducts located over the Experimental Track of the Railway Institute in Zmigrod. In particular, the impact of dynamic impacts on individual structural elements of the bridges and the extent of damage found during detailed inspections of these structures during their 30-year service life are described. Based on their analysis of the type and extent of damage, the showed that the impact is significant and mainly affects the bodies of viaduct embankments due to the gradual deconsolidation of soil structures in the immediate vicinity of the railroad track.
  1. Colaço A, Castanheira-Pinto A, Alves Costa P, Fernández Ruiz J. Combination of experimental measurements and numerical modelling for prediction of ground-borne vibrations induced by railway traffic. Construction and Building Materials. 2022; t. 343.
  2. Li X, Chen Y, Zou C, Wu J, Shen Z. Building coupling loss measurement and prediction due to train-induced vertical vibrations. Soil Dynamics and Earthquake Engineering. 2023; t. 164.
  3. Manso J, Gomes J, Marcelino J. Prediction of ground vibrations induced by rail traffic in Lisbon urban area. Heliyon. 2022; 8 (7).
  4.  Nader M, Purta E. Badanie wpływu drgań wybranych pojazdów na człowieka w otoczeniu bliższym i dalszym, Prace Naukowe „Transport”, Nr 1/24/2006, ISSN 1230-7823, Wyd. PR. Radom, 2006.
  5.  Rosikon A. Budownictwo komunikacyjne na terenach objętych szkodami górniczymi. Wydawnictwa Komunikacji i Łączności, Warszawa 1979.
  6. Ciesielski R, Maciąg E. Drgania drogowe i ich wpływ na budynki. WKiŁ, Warszawa, 1990.
  7. Bednarz J. Drgania gruntu wywołane przejazdami pojazdów szynowych. TTS Technika Transportu Szynowego. 2012; 19 (9): 2205 – 2214.
  8. Adam M, von Estorff O. Reduction of train- -induced building vibrations by using open and filled trenches. Computers & Structures. 2005; t. 83, wyd. 1, ss. 11-24.
  9. Sanayei M, Maurya P, Moore JA. Measurement of building foundation and ground-borne vibrations due to surface trains and subways. Engineering Structures. 2013; t. 53: 102 – 111,.
  10. Bednarz J, Brożek G, Targosz J. Application of finite elementsmethod in the design of road located in the densely built-up residential area. Journal of KONES. 2012; 19 (4).
  11. Bondarenko I, Lukoševičius V, Keršys R, Neduzha L. Investigation of Dynamic Processes of Rolling Stock–Track Interaction: Experimental Realization. Sustainability. 2023; 15 (6).
  12. Germonpré M, Degrande G, Lombaert G. Periodic track model for the prediction of railway induced vibration due to parametric excitation. Transportation Geotechnics. 2018; t. 17: 98 – 108.
  13. Kouroussis G, Connolly DP, Vogiatzis K, Verlinden O.Modelling the environmental effects of railway vibrations from different types of rolling stock: a numerical study. Shock and Vibrations, 2015.
  14. Lombaert G, Degrande G, Kogut J, François S. The experimental validation of a numerical model for the prediction of railway induced vibrations. Journal of Sound and Vibration. 2006; t. 297, wyd. 3–5, ss. 512 – 535.
  15.  Colaço A, Castanheira-Pinto A, Costa PA, Calçada R. Railway ground-borne vibrations: Comprehensive field test development and experimental validation of prediction tools. Rail Infrastructure Resilience. A Best-Practices Handbook.Woodhead Publishing Series in Civil and Structural Engineering. 2022; ss. 209 – 241.
  16.  Sheng X, Jones CJC, Thompson DJ. Acomparison of a theoretical model for quasi-statically and dynamically induced environmental vibration from trains with measurements. Journal of Sound and Vibration. 2003; 267 (3): 621 – 635.
  17. http://www.ikolej.pl/zaklady-laboratoria-i- -osrodki/osrodek-eksploatacji-toru-doswiadczalnego/ dostęp: 21.08.2023 r.
  18.  Fijałek M. 20-lecie toru doświadczalnego w Żmigrodzie. Geneza – przebieg budowy – charakterystyka techniczna. TTS Technika Transportu Szynowego. 2016; 23 (4): 11 – 29.
  19.  Kovalchuk V, Sysyn M, Nabochenko O, Pentsak A, Voznyak O, Kinter S. Stability of the railway subgrade under condition of its elements damage and severe environment.MATECWeb of Conferences. 2019; https://doi.org/10.1051/matecconf/ 201929403017.
  20.  Ustawa z 28 marca 2003 r. o transporcie kolejowym.
prof. dr hab. inż. Adam Wysokowski, Uniwersytet Zielonogórski, Instytut Budownictwa ORCID: 0000-0002-4547-2453
mgr inż. Waldemar Szulc, Instytut Kolejnictwa ORCID: 0000-0002-2151-1083

prof. dr hab. inż. Adam Wysokowski, Uniwersytet Zielonogórski, Instytut Budownictwa ORCID: 0000-0002-4547-2453

 awysokowski@infra-kom.eu

Full paper:

DOI: 10.15199/33.2023.10.10

Article in PDF file