(Open Access)
T. Burdzy,
M. Borowski,
G. Krajewski
Volume 563: Issue 7
Pages 14 – 17
Accepted for publication: 24.06.2019 r.
The article presents the results of research on the impact of interior decoration and furnishing of commercial type clothing stores, located at passage in commercial malls on operation of smoke extraction installations. CFD analyses and tests carried out with hot smoke show that interior decoration and equipment used in commercial mall has huge impact on smoke extraction. Further more localization and interior decoration of rooms connected to commercial spaces functionally related to the sales room of the commercial store, should be analyzed individualy focus on evacuation. Results form CFD modeling on examples of commercial stores can be totally different if the interior decoration and equipment in commercial mall was taken under consideration. CFD modeling is good engineering tool that allowing already at the design stage anticipate all important problems concerned with correct operation of the smoke extraction instalation.
Keywords: fire ventilation; providing air supply; shoppingmall; smoke extraction of commercial spaces; commercial spaces; evacuation.
Keywords: fire ventilation; providing air supply; shoppingmall; smoke extraction of commercial spaces; commercial spaces; evacuation.
[1] BS 7346-4:2003 Components for smoke and heat control systems – Part 4: Functional recommendations and calculation methods for smoke and heat exhaust ventilation systems, employing steady-state design fires. Code of practice.
[2] BS 7346-5:2005 Components for smoke and heat control systems. Functional recommendations and calculation methods for smoke and heat exhaust ventilation systems, employing time-dependent design fires. Code of practice.
[3] Burdzy Tomasz. 2018. Indywidualne systemy oddymiania wielokondygnacyjnych lokali handlowo-usługowych przyległych do pasażu galerii handlowych. Forum Wentylacja – Salon Klimatyzacja: 50 – 61.
[4] Gwynne Steven M.V., Eric R. Rosenbaum, Morgan J. Hurley. 2015. Employing the Hydraulic Model inAssessing Emergency Movement 59, „SFPE Handbook of Fire Protection Engineering” fifth edition. 2135 – 2171. DOI: 10.1007/978-1-4939-2565-0.
[5] Król Małgorzata, Aleksander Król. 2017. „Multi-criteria numerical analysis of factors influencing the efficiency of natural smoke venting of atria”. Journal of Wind Engineering & Industrial Aerodynamics 170: 149 – 161. https://doi.org/10.1016/j.jweia.2017.08.012.
[6] NFPA 92 Systemy ochrony przed zadymieniem. Edycja 2012.
[7] PD 7974-6:2004 The application of fire safety engineering principles to fire safety design of buildings – Part 6: Human factors: Life safety strategies – Occupant evacuation, behaviour and condition (Sub-system 6).
[8] Rozporządzenie Ministra Infrastruktury z 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz.U. z 2015 r. poz. 1422) wraz z późniejszymi zmianami: (Dz.U. z 2017 r. poz. 2285).
[9] Qiang Fu, Bin Peng, Li Chen. 2014. „Performance-Based Smoke Prevention and Extraction SystemDesign for an ExhibitionCenter”. Published by Elsevier Ltd. Procedia Engineering 71: 544 – 551. https://doi.org/10.1016/j.proeng.2014.04.078.
[10] Węgrzyński Wojciech, Gabriel Vigne. 2017. Experimental and numerical evaluation of the influence of the soot yield on the visibility in smoke in CFD analysis. Fire Saf Journal, 91, 389–398. https://doi.org/10.1016/j.firesaf.2017.03.053.
[2] BS 7346-5:2005 Components for smoke and heat control systems. Functional recommendations and calculation methods for smoke and heat exhaust ventilation systems, employing time-dependent design fires. Code of practice.
[3] Burdzy Tomasz. 2018. Indywidualne systemy oddymiania wielokondygnacyjnych lokali handlowo-usługowych przyległych do pasażu galerii handlowych. Forum Wentylacja – Salon Klimatyzacja: 50 – 61.
[4] Gwynne Steven M.V., Eric R. Rosenbaum, Morgan J. Hurley. 2015. Employing the Hydraulic Model inAssessing Emergency Movement 59, „SFPE Handbook of Fire Protection Engineering” fifth edition. 2135 – 2171. DOI: 10.1007/978-1-4939-2565-0.
[5] Król Małgorzata, Aleksander Król. 2017. „Multi-criteria numerical analysis of factors influencing the efficiency of natural smoke venting of atria”. Journal of Wind Engineering & Industrial Aerodynamics 170: 149 – 161. https://doi.org/10.1016/j.jweia.2017.08.012.
[6] NFPA 92 Systemy ochrony przed zadymieniem. Edycja 2012.
[7] PD 7974-6:2004 The application of fire safety engineering principles to fire safety design of buildings – Part 6: Human factors: Life safety strategies – Occupant evacuation, behaviour and condition (Sub-system 6).
[8] Rozporządzenie Ministra Infrastruktury z 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz.U. z 2015 r. poz. 1422) wraz z późniejszymi zmianami: (Dz.U. z 2017 r. poz. 2285).
[9] Qiang Fu, Bin Peng, Li Chen. 2014. „Performance-Based Smoke Prevention and Extraction SystemDesign for an ExhibitionCenter”. Published by Elsevier Ltd. Procedia Engineering 71: 544 – 551. https://doi.org/10.1016/j.proeng.2014.04.078.
[10] Węgrzyński Wojciech, Gabriel Vigne. 2017. Experimental and numerical evaluation of the influence of the soot yield on the visibility in smoke in CFD analysis. Fire Saf Journal, 91, 389–398. https://doi.org/10.1016/j.firesaf.2017.03.053.
mgr inż. Tomasz Burdzy, Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
ORCID: 0000-0002-1225-5583
dr hab. inż. Marek Borowski, prof. AGH, Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie ORCID: 0000-0003-4736-4824
dr inż. Grzegorz Krajewski, Instytut Techniki Budowlanej; Zakład Badań Ogniowych ORCID: 0000-0003-1016-7616
dr hab. inż. Marek Borowski, prof. AGH, Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie ORCID: 0000-0003-4736-4824
dr inż. Grzegorz Krajewski, Instytut Techniki Budowlanej; Zakład Badań Ogniowych ORCID: 0000-0003-1016-7616
dr inż. Tomasz Burdzy, Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
Full paper: