A. Machowska
Volume 552: Issue 8
Pages 77-79
Accepted for publication: 29.06.2018 r.
The paper presents the results of investigation into mass and linear changes of fly ash slag pastes up to 130 days of curing. The pastes were prepared from ground granulated blast furnace slag and fly ash from fluidized combustion of brown coal as an activator of slag’s binding reaction. The pastes were mixed in five proportions of binder components (by mass). The reference specimens were prepared from slag cement, multicomponent cement, Portland fly ash cement.All specimens were prepared with water/binder ratio equal 0,5. Linear changes were investigated in Grauf-Kaufman apparatus. Also the mass changes in time of curing were measured. The mass loss of all the specimens was noted. In the early period of curing fly ash-slag pastes underwent expansion and then shrinkage. The relation between linear changes (expansion and shrinkage) and proportions of fly ash and slag in binder was revealed.
Keywords: fluidized combustion; fly ash-slag binder; shrinkage; expansion.
Keywords: fluidized combustion; fly ash-slag binder; shrinkage; expansion.
[1] Akkaya Yilmaz, Chengsheng Ouyang, Surendra
P. Shah. 2007. „Effect of supplementary cementitious materials on shrinkage and crack development in concrete”. Cement and Concrete
Composites 29 (2): 117 – 123.
[2] Atis Cengiz Duran, Alaettin Kilic, Umur Korkut Sevim. 2004. „Strength and shrinkage properties of mortar containing a nonstandard high-calcium fly ash”. Cement and Concrete Research 34 (1): 99 – 102.
[3] Kledyński Zbigniew, Agnieszka Machowska, Barbara Pacewska, Iwona Wilińska. 2017. „Investigation of hydration products of fly ash-slag pastes”. Journal of Thermal Analysis and Calorimetry 130 (1): 351-363. DOI: 10.1007/s10973-017-6233-4.
[4] Kosior-Kazberuk Marta, Małgorzata Lelusz. 2012. „Ograniczenie skurczu zapraw cementowych zawierających popioły lotne”. Materiały Ceramiczne 64 (3): 309 – 313.
[5] Lee N. K., J. G. Jang, H. K. Lee. 2014. „Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages”. Cement and Concrete Composites 53: 239 – 248.
[6] Machowska Agnieszka, Zbigniew Kledyński, Iwona Wilińska, Barbara Pacewska. „Study of the early hydration processes and properties of fly ash-slag binders”. Bulletin of Materials Science (artykuł w procesie wydawniczym).
[7] PN-EN 450-1:2012. Popiół lotny do betonu – Część 1: Definicje, wymagania i kryteria zgodności.
[8] PN-EN 12617-4:2004. Wyroby i systemy do ochrony i napraw konstrukcji betonowych. Metody badań. Część 4: Oznaczanie skurczu i wydłużenia.
[2] Atis Cengiz Duran, Alaettin Kilic, Umur Korkut Sevim. 2004. „Strength and shrinkage properties of mortar containing a nonstandard high-calcium fly ash”. Cement and Concrete Research 34 (1): 99 – 102.
[3] Kledyński Zbigniew, Agnieszka Machowska, Barbara Pacewska, Iwona Wilińska. 2017. „Investigation of hydration products of fly ash-slag pastes”. Journal of Thermal Analysis and Calorimetry 130 (1): 351-363. DOI: 10.1007/s10973-017-6233-4.
[4] Kosior-Kazberuk Marta, Małgorzata Lelusz. 2012. „Ograniczenie skurczu zapraw cementowych zawierających popioły lotne”. Materiały Ceramiczne 64 (3): 309 – 313.
[5] Lee N. K., J. G. Jang, H. K. Lee. 2014. „Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages”. Cement and Concrete Composites 53: 239 – 248.
[6] Machowska Agnieszka, Zbigniew Kledyński, Iwona Wilińska, Barbara Pacewska. „Study of the early hydration processes and properties of fly ash-slag binders”. Bulletin of Materials Science (artykuł w procesie wydawniczym).
[7] PN-EN 450-1:2012. Popiół lotny do betonu – Część 1: Definicje, wymagania i kryteria zgodności.
[8] PN-EN 12617-4:2004. Wyroby i systemy do ochrony i napraw konstrukcji betonowych. Metody badań. Część 4: Oznaczanie skurczu i wydłużenia.
dr inż. Agnieszka Machowska, Politechnika Warszawska, Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska
dr inż. Agnieszka Machowska
Full paper is available at Publisher house SIGMA-NOT Sp. z o.o. webpage