BIM technology application to carbon footprint calculations in housing


openaccess, Vol. 627 (11) 2024 / poniedziałek, 25 listopada, 2024

Zastosowanie technologii BIM do obliczania śladu węglowego w budownictwie mieszkaniowym

(Open Access)

DOI: 10.15199/33.2024.11.14

citation/cytuj: Dębiński M., Bohatkiewicz J., Biruk S., Karkowski M. BIM technology application to carbon footprint calculations in housing. Materiały Budowlane. 2024. Volume 627. Issue 11. Pages 118-124. DOI: 10.15199/33.2024.11.14

The article presents examples of the application of BIM technology in residential construction in which the carbon footprint of an investment is estimated in order to select optimal technological and material solutions taking into account the life cycle of the entire building.An overview ofmethods for assessing the carbon footprint in construction is presented, and the dimensions and levels of BIM are discussed with a detailed indication of areas related to carbon emissions. Based on the literature, an analysis of the possibility of reducing the carbon footprint by optimizing a construction project using BIM technology was developed. The results indicate the need for deeper analysis at the investment planning stage. Appropriate selection of technologies and planning of implementation affects the reduction of carbon footprint.

W artykule przedstawiono przykłady zastosowania technologii BIM w budownictwie mieszkaniowym do szacowania śladu węglowego inwestycji w celu dokonania wyboru optymalnych rozwiązań technologiczno-materiałowych, biorąc pod uwagę cykl życia całego obiektu. Zaprezentowano przegląd metod oceny śladu węglowego w budownictwie oraz omówiono wymiary i poziomy BIM ze szczegółowym wskazaniem obszarów związanych z emisją dwutlenku węgla. Na podstawie literatury opracowano analizę możliwości redukcji śladu węglowego przez optymalizację inwestycji budowlanej dzięki wykorzystaniu technologii BIM. Wyniki wskazują na konieczność głębokiej analizy na etapie planowania inwestycji. Odpowiedni dobór technologii i zaplanowanie realizacji wpływa na redukcję śladu węglowego.
carbon footprint; BIM; building information modeling; life cycle analysis.

ślad węglowy; BIM; modelowanie informacji o budynku; analiza cyklu życia.
  1. How do the EU institutions and bodies calculate, reduce and offset their greenhouse gas emissions? Special Report European Court of Auditors. Luksemburg 2014 European Union.
  2.  https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-euets/ ets2-buildings-road-transport-and-additional-sectors_en (30.04.2024).
  3. Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003 establishing a scheme for greenhouse gas emission allowance trading within the Community and amending Council Directive 96/61/EC.
  4. https://www. eumonitor. eu/9353000/1/j9vvik7m1c3gyxp/vkmiobvzi1x7? ctx=vhsjgh0wpcp9 (30.04.2024).
  5. https://www.epa.gov/greenerproducts/what-embodied-carbon (30.04.2024).
  6.  Rokooei S. Building Information Modeling in Project Management: Necessities, Challenges and Outcomes, Procedia – Social and Behavioral Sciences. 2015.v ol. 210: 87 – 95.
  7. Wiedmann T, Minx J. A definition of Carbon Footprint, ISA Res Rep. 2007. vol. 7: 1 – 7.
  8.  Weidema BP, Thrane M, Christensen P, et al. Carbon footprint:A catalyst for life cycle assessment [J], J Ind Ecol. 2008. vol. 12: 3 – 6.
  9.  Gao T, Liu Q, Wang J, A comparative study of carbon footprint and assessment standards, International Journal of Low-Carbon Technologies. 2014. Vol. 9/3: 237 – 243.
  10.  WRI. The greenhouse gas protocol: a corporate accounting and reporting standard (Revised Edition) [M]. 2011 Geneva, SwitzerlandWorld Business Council for Sustainable Development.
  11.  ISO 14064. The greenhouse gas, 2006 Geneva, Switzerland International Organization for Standardization.
  12. BSI, PAS 2050-Specification for the Assessment of the Geneva, Switzerland, Life Cycle Greenhouse Gas Emissions of Goods and Services. 2008 London, UK British Standards Institution.
  13.  Technical Specification TSQ0010 General principles for the assessment and labeling of Carbon Footprint of Products. The Japanese Ministry of Economy, Trade and Industry.
  14. WRI. Product life cycle accounting and reporting standard. World Business Council for Sustainable Development, Geneva, Switzerland, 2011.
  15.  https://bimdictionary.com/(30.04.2024).
  16.  Piwkowski W. at all. BIM STANDARD PL, Polski Związek Pracodawców Budownictwa. Warszawa 2020.
  17.  Iu Z, Li P, Wang F, Osmani M, Demian P. Building Information Modeling (BIM) Driven Carbon Emission Reduction Research:A14-Year Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022.vol. 19.
  18.  Xiao-juan Li, Wan-jun Xie, Le Xu, Lu-lu Li, C.Y. Jim, Tai-bing Wei, Holistic life-cycle accounting of carbon emissions of prefabricated buildings using LCA and BIM. Energy and Buildings. 2022. vol. 266.
  19.  Xining Yang, Mingming Hu, Jiangbo Wu, Bin Zhao. Buildinginformation- modeling enabled life cycle assessment, a case study on carbon footprint accounting for a residential building in China, Journal of Cleaner Production. 2018. vol. 183: 729 – 743.
  20.  Kurian R, Kulkarni KS, Ramani PV, Meena CS, Kumar A, Cozzolino R. Estimation of Carbon Footprint of Residential Building in Warm Humid Climate of India through BIM. Energie. 2021; vol. 14.
  21.  Lu C, Chen JY, Pan CA, Jeng T. A BIM Tool for Carbon Footprint Assessment of Building Design. Proceedings of the 20th Conference on Computer Aided Architectural Design Research in Asia (CAADRIA). 2015.
  22.  Nwe Ni Myint, Muhammad Shafique, Embodied carbon emissions of buildings: Taking a step towards net zero buildings, Case Studies in Construction Materials. 2024. vol. 20.
  23.  IFC. Indian construction material database of Embodied Energy and GlobalWarming Potential. 2017; [Online]. Available: https://edgebuildings. com/wp-content/uploads/2022/04/IFC-India-Construction-Materials-Database- Methodology-Report. pdf.
  24.  https://climate.mit.edu/ask-mit/how-much-co2-emitted-building-newhouse (20.04.2024).
  25.  MacKay D. Sustainable Energy – without the hot air. UIT Cambridge Ltd., Cambridge, UK, 2009.
  26.  The Conversation. Embodied carbon: why truly net zero buildings could still be decades away, by Ljubomir Jankovic. 2021.
  27.  Circular Ecology: COP26 House – An Embodied Carbon Exemplar. November 4, 2021.
  28.  Rennert K, Errickson F, Prest BC et al. Comprehensive evidence implies a higher social cost of CO2. Nature. 2022. vol. 610: 687 – 692.
  29.  Mazur Ł, Olenchuk A. Life Cycle Assessment and Building Information Modeling Integrated Approach: Carbon Footprint of Masonry and Timber- -Frame Constructions in Single-Family Houses. Sustainability. 2023. vol. 15 (21).
  30.  Alvi S, Kumar H, Khan R. Integrating BIM with carbon footprint assessment of buildings: Areview. Materials Today: Proceedings; 2023. vol. 93: 497 – 504.
dr inż. Marcin Dębiński, Politechnika Lubelska, Wydział Budownictwa i Architektury
ORCID: 0000-0002-5967-0637
dr hab. inż. Janusz Bohatkiewicz, Instytut Badawczy Dróg i Mostów
ORCID: 0000-0002-9659-2666
dr hab. inż. Sławomir Biruk, Politechnika Lubelska, Wydział Budownictwa i Architektury
ORCID: 0000-0003-4392-8426
mgr inż. Michał Karkowski, Instytut Badawczy Dróg i Mostów
ORCID: 0000-0002-6323-3085

dr inż. Marcin Dębiński, Politechnika Lubelska, Wydział Budownictwa i Architektury
ORCID: 0000-0002-5967-0637

Correspondence address: m.debinski@pollub.pl

Full paper:

DOI: 10.15199/33.2024.11.14

Article in PDF file

Received: 02.10.2024 / Artykuł wpłynął do redakcji: 02.10.2024 r.
Revised: 30.10.2024 / Otrzymano poprawiony po recenzjach: 30.10.2024 r.
Published: 25.11.2024 / Opublikowano: 25.11.2024 r.