Effect of the type of foaming agent on the properties of ultra-low-density foam concrete


openaccess, Vol. 599 (7) 2022 / czwartek, 21 lipca, 2022

(Open Access)

DOI: 10.15199/33.2022.07.08

Gołaszewski Jacek, Klemczak Barbara, Smolana Aneta, Gołaszewska Małgorzata, Cygan Grzegorz, Mankel Christoph, Peralta Ignacio, Röser Frank, A. B. Koenders Eduardus. 2022. Effect of the type of foaming agent on the properties of ultra-low-density foam concrete. Volume 599. Issue 7. Pages 43-45. Article in PDF file

Accepted for publication: 19.05.2022 r.

Foamconcrete ismade by introducing foam, produced with a foaming agent, into the cement slurry. The article presents the results of research on the effect of the type of foaming agent on the thermo-mechanical properties of ultra-light foamconcrete. The examined samples of foam concrete with a protein foaming agent are characterized by a more uniform structure, greater compressive strength and a lower heat conductivity compared to foam concrete based on a synthetic foaming agent.
  1. Brady KC,Watts GRA, Jones MR. PROJECT REPORT PR/IS/40/01 Specification for foamed concrete. United Kingdom; 2001.
  2. Fu Y, Wang X,Wang L, Li Y. Foam Concrete: A State-of-the-Art and State-of-the-Practice Review. Adv. Mater. Sci. Eng. 2020; https://doi.org/10.1155/2020/6153602.
  3.  Ghorbani S, Ghorbani S, Tao Z, de Brito J, Tavakkolizadeh M. Effect of magnetized water on foam stability and compressive strength of foam concrete. Constr. Build. Mater. 2019; https://doi.org/10.1016/j.conbuildmat.2018.11.16.
  4. Vinith Kumar N,Arunkumar C, Srinivasa Senthil S. Experimental Study on Mechanical and Thermal Behavior of Foamed Concrete.Materials Today: Proceedings. 2018; https://doi. org/10.1016/j.matpr.2017.12.302.
  5.  Falliano D, Restuccia L, Gugliandolo E.Asimple optimized foam generator and a study on peculiar aspects concerning foams and foamed concrete. Constr Build Mater. 2021; https://doi.org/10.1016/j.conbuildmat.2020.121101.
  6. Narayanan N, Ramamurthy K. Structure and properties of aerated concrete: a review. Cem. Concr. Compos. 2000, https://doi. org/10.1016/S0958-9465 (00) 00016-0.
  7. Sun C, ZhuY, Guo J, ZhangY, Sun G. Effects of foaming agent type on theworkability, drying shrinkage, frost resistance and pore distribution of foamed concrete. Constr Build Mater. 2018; https://doi.org/10.1016/j.conbuildmat.2018.08.019.
  8.  Hashim M, Tantray M. Comparative study on the performance of protein and synthetic-based foaming agents used in foamed concrete, Case Studies in Construction Materials. 2021; https://doi.org/10.1016/j.cscm.2021.e00524.
  9. HamadaRF,HameedAM. Effect the addition of foamagent on some properties of cementmortar. In: AIP Conf. Proc. AIP Publishing LLC AIP Publishing. 2020; https://doi.org/10.1063/5.0000261.
  10. Jones M, Mccarthy A. Behaviour and Assessment of Foamed Concrete for Construction Applications. In: Dhir R., NewlandsM.,McCarthy A. editors. Use of Foamed Concrete in Construction. Thomas Telford; 2005. pp. 61–88.
  11. Gilka-Bötzow A, Folino P, Maier A, Koenders EAB,CaggianoA.TriaxialFailureBehavior ofHighly PorousCementitious FoamsUsed asHeat Insulation. Processes. 2021; https://doi.org/10.3390/pr9081373.
  12. Raj A, Sathyan D, Mini KM. Physical and functional characteristics of foam concrete: A review. Constr Build Mater. 2019; https://doi. org/10.1016/j.conbuildmat. 2019.06.052.
  13.  Applied Precision Ltd. ISOMET 2114 Thermal properties analyzer User’s Guide, Bratislava, SLOVAKIA, 2011; https://www.appliedp. com/download/manual/isomet2114_ug_en. pdf.
  14.  Falliano D, De Domenico D, Ricciardi G, Gugliandolo E. Experimental investigation on the compressive strength of foamed concrete: Effect of curing conditions, cement type, foaming agent and dry density. Constr Build Mater. 2018; https://doi.org/10.1016/j.conbuildmat. 2017.12.241. Przedstawione w artykule wyniki są częścią badań prowadzonych w ramach projektu europejskiego EU Horyzont 2020, nr GA 870114, pt. Integrated Porous Cementiti Nanocomposites In Non-Residential Building Envelopes For Green Active/Passive Energy Storage (NRG-STORAGE).
prof. dr hab. inż. Jacek Gołaszewski, Politechnika Śląska; Wydział Budownictwa ORCID: 0000-0003-4110-5581
prof. dr hab. inż. Barbara Klemczak, Politechnika Śląska; Wydział Budownictwa ORCID: 0000-0002-8102-894X
dr inż. Aneta Smolana, Politechnika Śląska; Wydział Budownictwa ORCID: 0000-0002-6757-9841
dr inż. Małgorzata Gołaszewska, Politechnika Śląska; Wydział Budownictwa ORCID: 0000-0002-5249-2639
mgr inż. Grzegorz Cygan, Politechnika Śląska; Wydział Budownictwa ORCID: 0000-0002-5534-704X
dr inż.Christoph Mankel, Institute of Construction and Building Materials; Technical University of Darmstadt, Germany ORCID: 0000-0001-8376-6156
dr inż. Ignacio Peralta, Institute of Construction and Building Materials; Technical University of Darmstadt, Germany, Laboratorio de Flujometría (FLOW); Facultad Regional Santa Fe (FRSF); Universidad Tecnológica Nacional (UTN), Argentina ORCID: 0000-0003-4316-9909
dr inż. Frank Röser, Wilhelm Roser Sohne GMBH CO. KG (RIB); Germany ORCID: 0000-0002-5926-1593
prof. dr inż. Eduardus A. B. Koenders, Institute of Construction and Building Materials; Technical University of Darmstadt, Germany ORCID: 0000-0001-8664-2554

prof. dr hab. inż. Jacek Gołaszewski, Politechnika Śląska; Wydział Budownictwa ORCID: 0000-0003-4110-5581

 jacek.golaszewski@polsl.pl

Full paper:

DOI: 10.15199/33.2022.07.08

Article in PDF file