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S trop Kleina został opatentowany w końcu XIX wie-
ku i był stosowany głównie w budynkach powstają-
cych do lat pięćdziesiątych XX wieku jako wy-
godny zamiennik stropów drewnianych [1]. Płyty

Kleina projektowano z wykorzystaniem różnych metod [2],
m.in. metody naprężeń dopuszczalnych [3]. W artykule
przedstawiono schemat obliczeń statyczno-wytrzymałościo-
wych takich stropów w świetle aktualnych norm [4, 5], co
może być przydatne podczas oceny stanu konstrukcji
i w procesie rewitalizacji.

Stropy Kleina (rysunek 1) są złożone z dwuteowników sta-
lowych o wysokości 12 – 30 cm oraz ceramicznej płyty zbro-
jonej [1, 6, 7]. Zamiast dwuteowników stosowano również
szyny kolejowe normalnotorowe pochodzące z rozbiórki to-
rów. Rozpiętość takich stropów jest zwykle nie większa niż
6 m, przy czym rozstaw belek stalowych wynosi 0,9 ÷ 1,9 m,
a dopuszczalne obciążenie 0,75 – 6 kN/m2 ponad ciężar samej
konstrukcji stropu.

W zależności od ułożenia cegieł w płycie wyróżnia się
stropy: ciężkie (cegły ułożone „na rąb”); półciężkie (dwie ce-
gły „na rąb”, dwie „na płask”) oraz lekkie (cegły ułożone
„na płask”), co przedstawiono na rysunku 2. Stropy lekkie są
zwykle stosowane pod poddaszami nieużytkowymi, natomiast
w pozostałych partiach budynku używane są stropy półcięż-
kie albo ciężkie [7]. Płyty ceglane są zbrojone płaskownika-
mi o przekroju od 1 mm x 20 mm do 2 mm x 30 mm, lub prę-
tami stalowymi (ø6 lub ø8) zwykle co drugą lub co trzecią spo-
inę. Płyty ceramiczne były wykonywane z cegły pełnej lub
dziurawki o wymiarach 250 x 120 x 65 mm, a w konstrukcjach
ze starej cegły także 270 x 130 x 60 mm [1].

Obliczenia statyczno-wytrzymałościowe polegają na spraw-
dzeniu belek stalowych oraz zbrojonej płyty ceglanej w stanach
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technical condition and any necessary maintenance, calculations
are performed according to current design codes. This paper
presents a verification scheme for Klein slabs of typical
dimensions. For ceramic slabs, we provide representative strain
and stress distributions at the ultimate limit state, as well as
formulas for load-bearing capacity depending on the slab type
(lightweight, semi-heavy, heavy). All relationships are illustrated
with examples from the technical report of the building at
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Streszczenie. Stropy Kleina, występujące w budynkach historycz-
nych, były projektowane różnymi metodami, bazującymi na aktu-
alnych wtedy normach. Podczas oceny stanu technicznego i ewen-
tualnej konserwacji wykonuje się obliczenia wg aktualnych wy-
tycznych normowych. W artykule przedstawiono schemat spraw-
dzeń stropów Kleina o typowych wymiarach. W przypadku płyt ce-
ramicznych podano reprezentatywne rozkłady odkształceń i naprę-
żeń w stanie granicznym nośności oraz wzory na nośność w zależ-
ności od rodzaju płyty (lekka, półcięzka, ciężka). Wszystkie zależ-
ności zostały zilustrowane przykładami pochodzącymi z eksperty-
zy budynku przy placu Starynkiewicza w Warszawie.
Słowa kluczowe: strop Kleina; obliczenia statyczno-wytrzymało-
ściowe; stan graniczny nośności; stan graniczny użytkowalności.

DOI: 10.15199/33.2025.12.20

Static calculations of Klein
slabs of historic buildings

Obliczenia statyczno-wytrzymałościowe stropów Kleina
w zabytkowych obiektach budowlanych

dr inż. Inez Kamińska1)*)

ORCID: 0000-0003-1421-6841
mgr inż. Szymon Spodzieja1)

ORCID: 0000-0001-5049-8837
inż. Krzysztof Daniluk2)

T he Klein slab was patented at the end of the 19th
century and was mainly used in buildings constructed
until the 1950s as a convenient replacement for
wooden ceilings [1]. Klein plates were designed using

various methods [2], including the working stress design
method [3]. The aim of this work is to present a scheme for
static calculations of such slabs in the light of current design
codes [4, 5], which may be useful when assessing the condition
of the structure and in the revitalization process.

Klein slabs are composed of steel I-beams of height
12 – 30 cm and a reinforced ceramic slab [1, 6, 7] (Figure 1).
As an alternative to I-beams, standard-gauge railway rails from
dismantled tracks were also used. The span of such ceilings is
usually no greater than 6 m, with the steel beam spacing
ranging from 0,9 ÷ 1,9 m. The permissible load ranges from
0,75 – 6 kN/m2 in addition to the weight of the ceiling structure
itself.

Depending on the arrangement of bricks in the slab, heavy
slabs (bricks laid in a seam pattern); semi-heavy slabs (two
bricks in a seam pattern, two laid flat) and light slabs (bricks
laid flat) are distinguished, as shown in Figure 2. Lightweight
slabs are usually used for structures under unused attics, while
semi-heavy or heavy slabs are used in other parts of the
building [7]. Brick slabs are reinforced, usually every second
or third joint, with flat bars, from 1 x 20 to 2 x3 0, or steel rods
(usually ø6 or ø8). Ceramic slabs were made of solid or
perforated brick of dimensions 250 x 120 x 65 mm, and in old
brick structures also 270 x 130 x 60 mm [1].
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granicznych nośności i użytkowalności. Sprawdzenie belek
stalowych jest dosyć łatwe, natomiast obliczenia płyt cegla-
nych są bardziej złożone i wymagają szerszego komentarza.
W artykule zamieszczamy wzory pozwalające wyznaczyć
nośność przekroju płyty w przypadku typowych stropów Kleina.
Wzory ilustrujemy przykładami obliczeniowymi, które zo-
stały zaczerpnięte z ekspertyzy technicznej konstrukcji bu-
dynku przy placu Starynkiewicza w Warszawie [8, 9].

Schemat pracy stropu Kleina
W stropie Kleina obciążenie użytkowe jest przenoszone

z legarów drewnianych podłogi przez płytę ceramiczną na bel-
ki stalowe, które są podparte na murowanych ścianach noś-
nych. Ze względu na brak kotwienia zakłada się, że dwute-
owniki stalowe mają schemat statyczny belki swobodnie pod-
partej. Płyty ceglane opierają się na dolnych półkach dwute-
owników i również mogą być modelowane belką lub płytą
swobodnie podpartą.

Obliczanie belek stalowych. Belki stalowe stropu Kleina
są poddane obciążeniom ciągłym. Obliczeniowy moment
oraz maksymalne ugięcie to:

(1)

gdzie:
Leff – rozpiętość efektywna belki;
qSGN – obciążenie w stanie granicznym nośności;
qSGU – obciążenie w stanie granicznym użytkowalności;
EIy – sztywność belki na zginanie.

W stanie granicznym nośności należy sprawdzić, czy noś-
ność przekroju belki stalowej jest wystarczająca, to znaczy
czy spełniony jest warunek (6.12) z normy 1993-1-1 [5]:

(2)

gdzie:

Mc,Rd – obliczeniowa nośność przekroju przy jednokierunkowym
zginaniu.

The static calculations involve verifying steel beams and a
reinforced brick slab at their ultimate and serviceability limit
states. Checking steel beams is relatively easy, so we limit
ourselves to a concise note. Calculations for brick slabs are
more complex and require a more detailed commentary. The
paper includes formulas for determining the slab cross-sectional
load-bearing capacity for typical Klein slabs. The equations are
illustrated with working examples, drawn from a technical
report on a building at Starynkiewicza Square in Warsaw [8, 9].

Load transfer in the Klein ceiling
In a Klein slab, the live load is transferred from the wooden

floor joists through the ceramic slab to the steel beams. These
are supported by masonry load-bearing walls. Due to the lack
of anchoring, the steel I-beams are assumed to be simply
supported. The brick slabs rest on the lower flanges of the
I-beams and can also be modeled as simply supported beams
(or slabs).

Steel beam calculations. The steel beams of the Klein slabs
are subjected to continuous loads. The design moment and
maximum deflection are:

(1)

where:
Leff – effective span of the beam;
qSGN – load at the ultimate limit state;
qSGU – load at the serviceability limit state;
EIy – bending stiffness of the beam.

In the ultimate limit state, it should be checked whether the
load-bearing capacity of the steel beam cross-section is
sufficient, i.e. whether the condition (6.12) of the 1993-1-1
Eurocode is met [5]:

(2)

where:
Mc,Rd – the ultimate cross-section capacity in uniaxial bending.

MEd = qSGN Leff
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Fig. 1. Typical cross-section Klein slab: 1 – steel I-beam; 2 – brick;
3 – brick slab reinforcement (flat bars or rods); 4 – lightweight
concrete; 5 – concrete or mortar; 6 – wooden joists; 7 – floor layers;
8 – Rabitz grid; 9 – plaster
Rys. 1. Typowy przekrój stropu Kleina: 1 – dwuteownik stalowy;
2 – cegła; 3 – zbrojenie płyty ceglanej (płaskowniki lub pręty);
4 – beton lekki; 5 – beton lub zaprawa; 6 – legary drewniane;
7 – warstwy podłogi; 8 – siatka Rabitza; 9 – tynk Fig. 2. Ceramic slab cross-section: a) lightweight slab;b) semi-

-heavy slab; c) heavy slab
Rys. 2. Przekrój przez płytę ceramiczną: a) strop lekki; b) strop
półciężki; c) strop ciężki
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Belki stalowe, używane w stropach Kleina mają zwykle
przekroje klasy 1 lub 2, co implikuje używanie wskaźnika wy-
trzymałości przekroju W = Wpl. W przypadku, gdy środniki
belek stalowych są obetonowane, można przyjąć w przybli-
żeniu, że nastąpiło zwiększenie wskaźnika wytrzymałości
o 25% [10]. Belek stalowych nie trzeba sprawdzać na
zwichrzenie, ponieważ są stężane przez konstrukcję stropu
Kleina, ale jeśli stan płyt ceglanych jest zły, to nie mogą one
zapewnić zabezpieczenia przeciw zwichrzeniu i należy takie-
go sprawdzenia dokonać [11]. Maksymalne ugięcie nie powin-
no przekraczać dopuszczalnej wartości:

(3)

Rozpiętość efektywna belki Leff może być przyjmowana
na różne sposoby. Można założyć, że teoretycznym punktem
podparcia jest środek części dwuteownika opartej na ścianie,
jeżeli rozkład docisku na ścianę jest w przybliżeniu równo-
mierny (jeśli długość oparcia na ścianie jest nie większa
niż 150 + h/30, gdzie h – wysokość belki wyrażona w mm)
[6, 12]. Alternatywnie przyjmuje się, że długość efektywna
belki to rozpiętość w świetle powiększona o 5% [3, 12].

Sprawdzenie belki stalowej stropu Kleina
Rozpatrywana belka stropu Kleina znajduje się na parte-

rze (odkrywka A-1(k) [8]). Przyjęto, że materiał elementu to
stal konstrukcyjna 010 W, zgodnie z PN/B-190 [3], o grani-
cy plastyczności fy = 210 MPa oraz module Younga
Es = 210 GPa [13]. Belka jest wykonana z dwuteownika
o wysokości 260 mm i szerokości 113 mm, przy grubości
półki i środnika równej odpowiednio 14,1 mm oraz 9,4 mm.
Moment bezwładności wynosi Iy = 5744 cm4. Przekrój jest
klasy 1, a więc do wymiarowania w stanie granicznym no-
śności służy wskaźnik plastyczny Wpl = 508 cm3. Belki są
rozstawione co 1,1 m.

W odkrywce stwierdzono półciężką płytę stalocera-
miczną z cegły pełnej, zbrojoną bednarką o przekroju
2 x 30 mm w każdej spoinie. Układ warstw to: tynk cemen-
towo-wapienny (2,0 cm), płyta półciężka (12,0 cm); piasek
z gruzem (5,5 cm); wylewka cementowa (10,0 cm). Zesta-
wienie obciążeń stałych płyty ceramicznej przedstawiono
w tabeli.

Steel beams used in Klein floors usually have cross-
-sections of class 1 or 2, which implies the use of the plastic
section modulus W = Wpl. If the webs of steel beams are
encased in concrete, it can be approximately assumed that the
section modulus increases by 25% [10]. In general, steel
beams are not required to be checked for lateral warping, as
they are braced by the Klein slab structure. However, if the
brick slabs are in poor condition, they cannot provide
protection against lateral warping, and such a check should
be performed [11]. The maximum deflection should not
exceed the permissible value:

(3)

The effective span of a beam Leff can be assumed in various
ways. The theoretical support point can be assumed to be the
center of the I-beam section resting on the wall if the pressure
distribution on the wall is approximately uniform (if the length
of the wall support is no greater than 150 + h/30, where h is
the beam height expressed in mm) [6, 12]. Alternatively, the
effective length of the beam is assumed to be the clear span
increased by 5% [3,12].

Example: check of a Klein slab steel beam
The Klein slab beam under consideration is located on the

ground floor (excavation A-1(k) [8]). The element material
was assumed to be 010 W structural steel, in accordance with
PN/B-190 [3], with a yield strength fy = 210 MPa and Young's
modulus Es = 210 GPa [13]. The beam is made of a stan-
dard German I-beam with a height of 260 mm and a width
of 113 mm, and the flange and web thicknesses are equal to
14,1 mm and 9,4 mm, respectively. The moment of inertia is
Iy = 5744 cm4. The cross-section is class 1, so the plastic
section modulus Wpl = 508 cm3 is used for dimensioning in the
ultimate limit state. The beams are spaced 1,1 m apart.

The site investigation revealed a semi-heavy steel-ceramic
slab made of solid brick, reinforced with 2x30 mm steel flat
bars (in each joint). The layer configuration was as follows:
cement-lime plaster (2.0 cm), semi-heavy slab (12.0 cm), sand
with rubble (5.5 cm), and cement screed (10.0 cm). A listing
of the permanent loads acting on the ceramic slab is presented
in Table.

wmax ≤ wlim =
Leff

250 wmax ≤ wlim =
Leff

250

Summary of constant loads for a ceramic plate
Zestawienie obciążeń stałych płyty ceramicznej

Load description/Opis obciążenia Value gk [kN/m2]/
Wartość gk [kN/m2]

Floor finish – cement screed, 10 cm thick (0,10 • 21)/Warstwa wykończeniowa – wylewka cementowa grubości 10,0 cm (0,10 • 21) 2,10

Sand with rubble, 5,5 cm thick (partially as filling between the ribs/Piasek z gruzem grubości 5,5 cm (częściowo jako wypełnienie pomiędzy
żebrami) 1,78

Semi-havy Klein slab made of solid brick/Płyta stropu Kleina półciężka z cegły pełnej 1,55

Plaster, 2,0 cm thick (0,02 • 19)/Tynk grubości 2,0 cm (0,02 • 19) 0,38

Floor finish + self-weight of the Klein ceiling → ∑=/Warstwy wykończeniowe + ciężar własny stropu Kleina→ ∑= 5,81
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Belka jest obciążona ciężarem własnym o wartości
0,4192 kN/m, ciężarem płyty Kleina i warstw podłogowych
5,81 • 1,1 = 6,391 kN/m oraz obciążeniem użytkowym
2 • 1,1 = 2,2 kN/m. W efekcie obciążenia w stanach granicz-
nych nośności i użytkowalności wynoszą odpowiednio:
qSGN = 1,35 • (6,391 + 0,4192) + 1,5 • 2,2 = 11,5 kN/m

(4)
qSGU = 6,391 + 0,4192 + 2,2 = 7,91 kN/m

Nośność przekroju na zginanie, zgodnie z (1), to:

(5)

Rozpiętość belki w świetle wynosi L0 = 601 cm, stąd dłu-
gość efektywna i dopuszczalne ugięcie, obliczone ze wzoru
(3), wynoszą:

(6)

W stanie granicznym nośności wartość obciążenia równomier-
nego to qSGN = 11,5 kN/m, a więc moment obliczeniowy (1) to:

MEd = 1/8 • 11,5 • 6,312 = 57,2 kNm < Mc,Rd = 106,7 kNm(7)

Belka stalowa przenosi zadane obciążenie. Wytężenie
przekroju wynosi 54%.

W stanie granicznym użytkowalności wartość obciążenia
równomiernego to qSGU = 7,91 kN/m, więc ugięcie (1) wynosi:

(8)

Maksymalne ugięcia nie przekraczają wartości dopusz-
czalnej.

Obliczenia zbrojonej płyty ceramicznej
W przypadku zbrojonych płyt ceglanych w stanie gra-

nicznym nośności trzeba sprawdzić warunek (6.21) nor-
my 1996-1-1 [4]:

MEd ≤ MRd (9)
gdzie:
MEd – obliczeniowa wartość momentu na płycie ceglanej.

Naszym celem było znalezienie nośności MRd płyt cegla-
nych stropów Kleina przedstawionych na rysunku 2. Zastoso-
wano schemat statyczny belki swobodnie podpartej (segment
powtarzalny płyty ceramicznej), obciążonej w sposób ciągły.
Płyty ceglane stropu Kleina są konstrukcjami silnie zbrojony-
mi. W stanie granicznym nośności dochodzi do zniszczenia
materiału cegły przy ściskaniu, ale stal płaskowników pozosta-
je sprężysta, a więc nie można wykorzystać wzorów z normy
[4]. W obliczeniach korzystamy z normowych liniowo-ideal-
nie plastycznych relacji konstytutywnych zarówno w przypad-
ku stali, jak i cegły (rysunek 3). Zakładamy, że w stanie gra-
nicznym nośności mur przenosi jedynie ściskanie. W przypad-
ku stropów Kleina osiągnięcie stanu granicznego nośności
następuje przez osiągnięcie wartości granicznej odkształce-
nia εmu w górnych włóknach płyty ceramicznej. Odkształce-

The beam is loaded with its own weight of value
0,4192 kN/m, the weight of the Klein slab and floor layers
5,81 • 1,1 = 6,391 kN/m, and the live load 2 • 1,1 = 2,2 kN/m.
As a result, the loads at the ultimate and serviceability limit
states are:
qSGN = 1,35 • (6,391 + 0,4192) + 1,5 • 2,2 = 11,5 kN/m

(4)
qSGU = 6,391 + 0,4192 + 2,2 = 7,91 kN/m

The bending resistance of the cross-section, according to (1),
is:

(5)

The clear span of the beam is L0 = 601 cm, hence the
effective length and permissible deflection, calculated from
formula (3), are:

(6)

In the ultimate limit state, the value of the uniform load is
qSGN = 11,5 kN/m, so the design moment (1) becomes:

MEd = 1/8 • 11,5 • 6,312 = 57,2 kNm < Mc,Rd = 106,7 kNm(7)

The steel beam carries the given load. The utilization of the
beam cross-section is 54%.

In the serviceability limit state the value of the uniform load
is qSGU = 7,91 kN/m, so the deflection (1) equals:

(8)

Maximum deflections do not exceed the permissible
value.

Calculations of a reinforced ceramic plate
For reinforced brick slabs in the ultimate limit state,

condition (6.21) of the 1996-1-1 Eurocode must be checked
[4]:

MEd ≤ MRd (9)
where:
MEd – the design value of the moment on the brick slab.

Our goal is to find the load-bearing capacity of the Klein
brick slabs MRd, shown in Figure 2. We will use the static
scheme of a simply supported beam (a repeating segment of
a ceramic plate) subjected to a continuous load. Brick plates
of the Klein slabs are heavily reinforced structures. Typically,
at the ultimate limit state, the brick material fails under
compression, but the steel of the flat bars remains elastic,
so formulas (6.22) and (6.23) of the code [4] cannot be used.
In the calculations we use the standard linear-ideally plastic
constitutive relations for both steel and brick (Figure 3).
We assume that at the ultimate limit state, the brick carries
compressive loads only. For Klein slabs, the ultimate limit
state is reached when the strain in the upper fibers of the
ceramic slab reaches the limit value εmu. The strains are

wmax = = 1,35 cm < 2,52 cm
0,0791 • 6314

21000 • 5744
5

384
wmax = = 1,35 cm < 2,52 cm

0,0791 • 6314

21000 • 5744
5

384

Leff = 1,05 • 601 = 631 cm, wlim =
631
250 = 2,52 cm

Leff = 1,05 • 601 = 631 cm, wlim =
631
250 = 2,52 cm

Mc,Rd = • 10–2 = 106,7 kNm=
Wpl • fy

γM0

508 • 21

1,0
Mc,Rd = • 10–2 = 106,7 kNm=

Wpl • fy

γM0

508 • 21

1,0
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nia rozkładają się liniowo, zgodnie z hipotezą płaskich przekro-
jów. Część rozkładu naprężenia normalnego jest opisana funk-
cją liniową (strefa sprężysta), a część funkcją stałą (strefa upla-
styczniona). Oś zginania płyty półciężkiej znajduje się zawsze

w półce. Należy jednak rozpa-
trzeć dwa przypadki osiągnię-
cia stanu granicznego: gdy stre-
fa sprężysta materiału cegły po-
zostaje poza środnikiem (rysu-
nek 4b) lub gdy obejmuje tak-
że część środnika (rysunek 4c).
Wykresy odkształcenia i naprę-
żenia w momencie osiągnięcia
εmu w górnych włóknach płyty
przedstawiono na rysunku 4.

Wprowadzamy oznaczenia (rysunek 3 i rysunek 4):

(10)

gdzie:
d – wysokość użyteczna przekroju;
c – wysokość strefy ściskanej;
b – szerokość przekroju;
bp – szerokość środnika;
h – wysokość środnika;
εmu i εm1 – odkształcenia graniczne materiału cegły;
fd – obliczeniowa wytrzymałość materiału cegły na ściskanie;
Es – moduł Younga stali;
fyd – obliczeniowa granica plastyczności stali;
As – pole zbrojenia.

Rozpatrujemy belkę o przekroju powtarzalnym płyty
Kleina.

Zasięg strefy ściskanej wyznacza się z równania równowagi
sił w przekroju. W przypadku płyt lekkich lub ciężkich
(rysunek 4a) bezwymiarowy zasięg strefy ściskanej to:

(11)

w przypadku płyt półciężkich, w których strefa sprężysta
pozostaje w półce (rysunek 4b):

distributed linearly, according to the hypothesis of flat cross-
-sections. Part of the normal stress distribution is described
by a linear function (elastic zone), and part is constant (plastic
zone). The bending axis of a semi-heavy slab is always
located in the flange, but two
cases of reaching the ultimate
limit state must be considered:
when the elastic zone of the
brick material remains outside
the web (Figure 4b) or when it
also includes a part of the web
(Figure 4c). The strain and
stress diagrams at the instant of
reaching εmu in the top fibers of
the plate are shown in Figure 4.

We introduce the following notation (see Figure 3 and Figure 4):

(10)

where:
d – effective depth of the cross-section;
c – depth of the compression zone;
b – width of the cross-section;
bp – width of the web;
h – height of the web;
εmu and εm1 – limit deformations of the brick material;
fd – design compressive strength of brick material;
Es – the Young's modulus of the steel;
fyd – design yield strength of steel;
As – reinforcement area.

We are considering a beam with a repeated cross-section of the
Klein plate.

The depth of the compression zone is determined from the
force equilibrium equation in the cross-section. For light or
heavy plates (Figure 4a), the dimensionless depth of the
compression zone is:

(11)

for semi-heavy plates, for which the elastic zone remains in the
flange (Figure 4b):

Fig. 3. Analyzed stress-strain relations for: a) steel; b) brick
Rys. 3. Rozpatrywane relacje naprężenie-odkształcenie w przypadku:
a) stali; b) cegły
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Fig. 4. Strain and stress distributions in the ultimate limit state for
Klein slabs: a) lightweight/heavy slab; b) semi-heavy slab, the
elastic zone is contained in the flange; c) semi-heavy slab, elastic
zone is in the web and in the flange
Rys. 4. Rozkład odkształcenia i naprężenia w stanie granicznym
nośności w przypadku stropów Kleina: a) strop lekki/ciężki;
b) strop półciężki; strefa sprężysta znajduje się w półce; c) strop
półciężki; strefa sprężysta jest w środniku i w półce

εs
As

bp

y

b

z

d
h

c

fd

fd

σs

εmu
ε σ

εml

δ =
c
d

; γ =
AsEsεmu

b d fd
; α =

εm1

εmu
; β =

bp

b ; χ =
h
dδ =

c
d

; γ =
AsEsεmu

b d fd
; α =

εm1

εmu
; β =

bp

b ; χ =
h
d

δ =
√γ2 + 2γ(2 – α) – γ

2 – αδ =
√γ2 + 2γ(2 – α) – γ

2 – α



197

SCIENCE IN CONSTRUCTION – SELECTED PROBLEMS

12/2025 (nr 640)

(12)

a w przypadku płyt półciężkich, w których strefa sprężysta
znajduje się częściowo w środniku (rysunek 4c):

(13)

Wzory (11), (12) oraz (13) obowiązują, jeżeli stal się
nie uplastyczni, co oznacza, że odkształcenie na poziomie
zbrojenia musi być mniejsze od fyd/Es. Ten warunek impli-
kuje następujące ograniczenie na wysokości strefy ścis-
kanej:

(14)

W typowych stropach Kleina δlim = 0,7 ÷ 0,8, podczas gdy
δ > 0,8, a więc nierówność (14) jest zwykle spełniona. W przy-
padku przekroju teowego (12) oraz (13) oś zginania znajdu-
je się w półce, a więc:

δ ≥ χ (15)

Aby obowiązywał wzór (12), musi być spełniony warunek:

(1 – α) δ ≥ χ (16)
a w przypadku wzoru (13):

(1 – α) δ < χ (17)

Przy spełnieniu tych ograniczeń, nośność przekroju belko-
wego jest następująca:
● w przypadku płyt lekkich lub ciężkich:

MRd = (1/6)b d2fdδ{3(2 – α – δ + αδ) – α2δ} (18)

w przypadku płyt półciężkich, w których strefa sprężysta
pozostaje w półce:

MRd = (1/6)b d2fd[δ{3(2 – α – δ + αδ) – α2δ} – 3(1 – β)χ(2 – χ)]
(19)

● w przypadku płyt półciężkich, w których strefa sprężysta
znajduje się częściowo w środniku:

(20)

Przy β → 1 oraz χ → 0 równania dotyczące płyty teowej
dążą do formuł otrzymanych w przypadku płyt prostokąt-
nych, tzn. (12) oraz (13) dążą do (11), natomiast (19) i (20)
do (18). Otrzymane nośności są nośnościami konserwatyw-
nymi w stosunku do wartości, które otrzymuje się przy zało-
żeniu modelu parabolicznego. Nie ma potrzeby sprawdzania
ugięć płyt ceramicznych stropu Kleina, ponieważ są one dość
sztywne. Typowo stosunek Lpłyty,eff/d < 20, a więc w myśl
punktu 5.5.2.5 normy [4] stan graniczny użytkowalności nie
jest osiągany.

(12)

and for semi-heavy slabs, for which the elastic zone is partially
located in the web (Figure 4c):

(13)

Formulas (11), (12) and (13) are valid if the steel does
not yield, which means that the deformation at the
reinforcement level must be less than fyd/Es. This condition
implies the following limitation on the depth of the
compression zone:

(14)

For typical Klein slabs δlim = 0,7 ÷ 0,8, while δ > 0,8, and
therefore the inequality (14) is usually satisfied. For a T-section
(12) and (13), the bending axis is located in the flange, so the
following occurs:

δ ≥ χ (15)

The condition to apply formula (12) is that:

(1 – α) δ ≥ χ (16)

and for (13):

(1 – α) δ < χ (17)

When these inequalities are met, the ultimate capacity of the
beam cross-section is as follows:
● for light or heavy slabs:

MRd = (1/6)b d2fdδ{3(2 – α – δ + αδ) – α2δ} (18)

for semi-heavy slabs for which the elastic zone remains in the
flange:

MRd = (1/6)b d2fd[δ{3(2 – α – δ + αδ) – α2δ} – 3(1 – β)χ(2 – χ)]
(19)

● for semi-heavy slabs for which the elastic zone is partially
located in the web:

(20)

When β → 1 and χ → 0 the equations for the T-plate tend
to the formulas obtained for rectangular plates, that is (12)
and (13) approach (11), whereas the limit of (19) and (20)
is (18). The obtained sectional moment capacities are
conservative in relation to the values obtained assuming a
parabolic model. There is no need to check the deflections
of the ceramic slab, because these slabs are quite stiff.
Typically, the ratio Lplates,eff/d < 20, so in accordance with
point 5.5.2.5 of the code [4], the serviceability limit state is
not reached.

δ =
√(γ – χ(1 – β))2 + 2γ(2 – α) – (γ – (1 – β)χ)

2 – αδ =
√(γ – χ(1 – β))2 + 2γ(2 – α) – (γ – (1 – β)χ)

2 – α

δ=
√(αγ–χ(1–β))2 + (1+β(α(2–α)–1))(2γa–(1–β)χ2)– (αγ–(1–β)χ)

(1 + β(α(2 – α) – 1))δ=
√(αγ–χ(1–β))2 + (1+β(α(2–α)–1))(2γa–(1–β)χ2)– (αγ–(1–β)χ)

(1 + β(α(2 – α) – 1))

δ ≥ δlim =
Es εmu

fyd + Es εmu
δ ≥ δlim =

Es εmu

fyd + Es εmu

MRd = b d2fd[δβ{3(2 – α – δ + αδ) – α2δ} +
1

]
6

(1 – β)(δ – χ)2(3 – δ – 2χ)
α δMRd = b d2fd[δβ{3(2 – α – δ + αδ) – α2δ} +

1
]

6

(1 – β)(δ – χ)2(3 – δ – 2χ)
α δ
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Wyznaczenie nośności zbrojonych
płyt ceramicznych stropu Kleina

W rozpatrywanym budynku były zarówno stropy wykona-
ne z cegły pełnej, jak i z cegły dziurawki. Przedstawimy ob-
liczenia nośności płyt ceglanych stropu Kleina w przypadku
płyty ciężkiej wykonanej z cegły pełnej oraz dwóch płyt pół-
ciężkich, wykonanych odpowiednio z cegły pełnej i z cegły
dziurawki.

Przyjęto, że płaskowniki stalowe zostały wykonane ze stali
konstrukcyjnej 010 W, zgodnie z PN/B-190 [3]. Ma ona
właściwości [13]:

fy =210MPa,γs =1,15, fyd =210/1,15=182,6MPa,Es =210GPa(21)

Uplastycznienie stali zachodzi przy odkształceniu
0,8695 • 10–3.

W przypadku cegły pełnej wytrzymałość na ściskanie ele-
mentów murowych to 10 MPa, natomiast wytrzymałość za-
prawy wynosi 2,5 MPa. Charakterystyki materiałowe, zgod-
nie z [4], są następujące:
fb = 10 MPa, fm = 2,5 MPa, K = 0,45
fk = 0,45 • 100,7 • 2,50,3 = 2,969 MPa, γM = 2,5 (22)
fd = 2,969/2,5 = 1,188 MPa, εm1 = 0,001, εmu = 0,0035

Obliczymy nośność przekroju płyty ciężkiej przedstawionej na
rysunku 5, dla której moment obliczeniowy to MEd = 320 kNcm.
Zbrojenie o polu 0,4 cm2 jest rozmieszczone co spoinę
(co 8,5 cm). Na długości 100 cm znajduje się 4,71 cm2 stali.
Współczynniki bezwymiarowe wynoszą:

(23)

a zasięg strefy ściskanej, zgodnie z (11):

(24)

Warunek stosowania wzoru (11) jest spełniony:

(25)

Nośność rozpatrywanej płyty ciężkiej, zgodnie z (18),
wynosi:

(26)
Płyta przenosi zadane obciążenie.

Example: determining the ultimate sectional
capacity of reinforced ceramic slabs
of a Klein slab

The building in question had both solid and perforated brick
floors. We will present calculations for three cases: we will find
the moment capacities of the Klein brick slabs for a heavy slab
made of solid brick and two semi-heavy slabs made of solid
brick and perforated brick, respectively.

It was assumed that the steel flat bars were made of 010 W
structural steel, in accordance with PN/B-190 [3]. It has
properties [13]:

fy =210MPa,γs =1,15, fyd =210/1,15=182,6MPa,Es =210GPa(21)

Yielding of steel occurs when the strain reaches 0,8695 • 10–3

In the case of solid brick, the compressive strength of the
masonry elements is 10 MPa, while the strength of the mortar
is 2,5 MPa. Material characteristics, in accordance with [4], are
as follows:
fb = 10 MPa, fm = 2,5 MPa, K = 0,45
fk = 0,45 • 100,7 • 2,50,3 = 2,969 MPa, γM = 2,5 (22)
fd = 2,969/2,5 = 1,188 MPa, εm1 = 0,001, εmu = 0,0035

We will calculate the ultimate limit capacity of the cross-
-section of the heavy plate shown in Figure 5, for which
the design moment is MEd = 320 kNcm. The reinforcement
with an area is distributed every joint (0,4 cm2 every 8,5 cm),
along the length of 100 cm there is 4,71 cm2 of steel. The
dimensionless coefficients are:

(23)

and the depth of the compression zone, according to (11), is:

(24)

The condition for the applicability of the formula (11) is fulfilled:

(25)

The capacity of the heavy slab under consideration, according
to (18), equals:

(26)
The slab carries the given load.

Fig. 5. Klein’s heavy ceramic slab, made of solid brick.
Geometry, strains and stresses in the ultimate limit
state
Rys. 5. Płyta ciężka stropu Kleina, wykonana z cegły pełnej.
Geometria i odkształcenia oraz naprężenia w stanie
granicznym nośności
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δ =

c = 0,815 • 9,5 = 7,74 cm

= 0,815
√3,072 + 2 • 3,07 • (2 – 0,286) – 3,07

2 – 0,286δ =

c = 0,815 • 9,5 = 7,74 cm

= 0,815
√3,072 + 2 • 3,07 • (2 – 0,286) – 3,07
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δlim = = 0,801 < 0,815 = δ
210000 • 0,0035

182,6 + 210000 • 0,0035δlim = = 0,801 < 0,815 = δ
210000 • 0,0035

182,6 + 210000 • 0,0035

MRd = • 0,815{3(2 – 0,286 – 0,815 + 0,285 •

• 0,815) – 0,2862 • 0,815} = 485 kNcm > 320 kNcm = MEd

100 • 9,52 • 0,119

6MRd = • 0,815{3(2 – 0,286 – 0,815 + 0,285 •

• 0,815) – 0,2862 • 0,815} = 485 kNcm > 320 kNcm = MEd

100 • 9,52 • 0,119
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W ramach drugiego przykładu obliczymy nośność płyty
półciężkiej stropu Kleina, której przekrój powtarzalny jest
przedstawiony na rysunku 6. Płyta jest zbrojona płaskowni-
kami 2 mm x 30 mm, rozmieszczonymi co spoinę i umiejsco-
wiona m.in. na parterze w miejscu odkrywki A-1(k), gdzie ob-
liczeniowy moment to MEd = 539 kNcm [8]. W odkrywce tej
stwierdzono następujący układ warstw: tynk cementowo-wa-
pienny (2,0 cm), płyta półciężka z cegły dziurawki (12,0 cm),
zasypka keramzytowa (2,5 cm); styropian (6,0 cm); wylew-
ka cementowa (7,0 cm); płytki lastryko (0,5 cm). Płyty Kle-
ina oparte są na belkach stalowych z dwuteowników o wyso-
kości 200 mm w rozstawie co 1,4 m.

Obliczamy bezwymiarowy zasięg strefy ściskanej ze wzoru
(12). Przy:

otrzymujemy:

Należy sprawdzić warunki stosowania wzoru (12), czyli
nierówności (14), (15) oraz (16). Są one spełnione:

(29)

Zasięg strefy ściskanej to:

c = 0,884 • 9,5 = 8,40 cm (30)

natomiast nośność przekroju płyty ceglanej, zgodnie z (19),
wynosi:

(31)

Płyta przenosi zadane obciążenie, wytężenie elementu to
64%.

Strop Kleina z płytą półciężką, wykonaną z cegły dziu-
rawki, znajduje się m.in. na kondygnacji 3 w miejscu
odkrywki A-36(k), gdzie obliczeniowy moment to
MEd = 200 kNcm [8]. Geometria rozpatrywanej płyty jest
przedstawiona na rysunku 7.

In the second example, we will calculate the load-bearing
capacity of a semi-heavy Klein slab, the repeating cross-section
of which is shown in Figure 6. The slab is reinforced with flat
bars is 2 mm x 30 mm, placed at every joint. Such a slab is
located, among others, on the ground floor in the A-1(k) spot,
where the design moment is MEd = 539 kNcm [8]. The
following layer arrangement was found during site
investigation: cement-lime plaster (2.0 cm), semi-heavy
perforated brick slab (12.0 cm), expanded clay backfill (2.5 cm),
polystyrene (6.0 cm), cement screed (7.0 cm), terrazzo tiles
(0.5 cm). The Klein slabs are supported on steel beams made
of German standard I-beams, 200 mm high, spaced 1.4 m apart.

We calculate the dimensionless depth of the compression
zone using the formula (12). Denoting:

we get:

The conditions of applicability of the formula (12) , namely
inequalities (14), (15) and (16), should be checked. They are met:

(29)

The depth of the compression zone is:

c = 0,884 • 9,5 = 8,40 cm (30)

while the ultimate moment capacity of the brick slab cross-
section, in accordance with (19), equals:

(31)

The slab carries the given load, the element's utilization is
64%.

The Klein slab with a semi-heavy slab made of perforated
brick is located, among others, on the 3rd floor in the location
A-36(k), where the design moment is MEd = 200 kNcm [8].
The geometry of the slab under consideration is shown in
Figure 7.

Fig. 6. Klein’s semi-heavy ceramic slab, made of solid
brick, in a historic building at Starynkiewicza Square in
Warsaw. Geometry, strains and stresses in the ultimate
limit state
Rys. 6. Płyta półciężka stropu Kleina, wykonana z cegły peł-
nej, w historycznym budynku przy placu Starynkiewicza
w Warszawie. Geometria, odkształcenia i naprężenia w sta-
nie granicznym nośności
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√(2,64–0,579(1–0,292))2 +2 • 2,64(2–0,286)–1(2,64–0,579) (1–0,292))
2 – 0,286 (28)

δlim = = 0,801, δ = 0,884 > 0,801

δ = 0,884 ≥ 0,579 = χ, (1 – α) δ = 0,631 ≥ 0,579 = χ

210000 • 0,0035
182,6 + 210000 • 0,0035δlim = = 0,801, δ = 0,884 > 0,801

δ = 0,884 ≥ 0,579 = χ, (1 – α) δ = 0,631 ≥ 0,579 = χ

210000 • 0,0035
182,6 + 210000 • 0,0035

MRd = [0,884 • {3 • (2 – 0,286 – 0,884 +

+ 0,286 • 0,884) – 0,2862 • 0,884} –3(1 – 0,292) • 0,579 •
• (2 – 0,579)] = 843 kNcm > 539 kNcm = MEd

44,5 • 9,52 • 0,119
6MRd = [0,884 • {3 • (2 – 0,286 – 0,884 +

+ 0,286 • 0,884) – 0,2862 • 0,884} –3(1 – 0,292) • 0,579 •
• (2 – 0,579)] = 843 kNcm > 539 kNcm = MEd

44,5 • 9,52 • 0,119
6
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Wytrzymałość na ściskanie elementów murowych płyt wy-
konanych z cegły dziurawki to 10 MPa, a zaprawy 2,5 MPa.
W przypadku tej płyty przyjmujemy:

fb = 5 MPa, fm = 2,5 MPa, K = 0,30
fk = 0,30 • 50,7 • 2,50,3 = 1,218 MPa, γm = 2,5 (32)

fd = 1,218/2,5 = 0,4874 MPa, εm1 = 0,001, εmu = 0,002
Obliczamy bezwymiarowy zasięg strefy ściskanej ze wzoru

(12). Przy:

otrzymujemy bezwymiarowy zasięg strefy ściskanej (13):

δ = 0,926 (34)

Warunki stosowalności (13), to nierówności (14), (15) oraz
(17), które są spełnione:

(35)

Strefa ściskana ma wysokość:

δ = 0,926 • 9,5 = 8,80 cm (36)

a nośność przekroju płyty ceglanej (20) przybiera wartość:

MRd = 309 kNcm > 200 kNcm = MEd (37)

Warunek nieprzekroczenia stanu granicznego (9) jest speł-
niony, a wytężenie wynosi 65%. Wykresy odkształcenia
podłużnego i naprężenia normalnego przedstawiono na ry-
sunku 7.

Podsumowanie
W artykule przedstawiono schemat obliczeń statyczno-wy-

trzymałościowych stropu Kleina, złożonego ze stalowych dwu-
teowników oraz zbrojonej płyty ceramicznej. Zaprezentowano
wzory na nośność płyty ceglanej, które nie są podane w nor-
mie [4]. Zależności zostały zilustrowane przykładami zaczerp-
niętymi z ekspertyzy technicznej istniejącego budynku [8].

Stare normy polskie zalecały wykonywanie obliczeń
różnymi metodami [2], m.in. metodą naprężeń dopusz-
czalnych, która jest bardziej konserwatywna niż metoda
stanów granicznych. Oznacza to, że wg Eurokodu [4], ist-
niejące stropy Kleina mogą przenosić większe obciążenia
niż te, na które były pierwotnie projektowane. Z kolei nor-

The compressive strength of the masonry elements of the
slabs made of perforated brick is 10 MPa, and the compressive
strength of mortar is 2,5 MPa. For this slab, we assume:

fb = 5 MPa, fm = 2,5 MPa, K = 0,30
fk = 0,30 • 50,7 • 2,50,3 = 1,218 MPa, γm = 2,5 (32)

fd = 1,218/2,5 = 0,4874 MPa, εm1 = 0,001, εmu = 0,002
We calculate the dimensionless depth of the compression

zone using formula (12). Calculating:

we obtain the dimensionless depth of the compression zone (13):

δ = 0,926 (34)

Conditions of applicability of (13) are inequalities (14), (15)
and (17), which are met:

(35)

The compression zone has a depth of:

δ = 0,926 • 9,5 = 8,80 cm (36)

and the ultimate limit capacity of the brick slab cross-section
(20) takes on the value:

MRd = 309 kNcm > 200 kNcm = MEd (37)

Condition of not exceeding the limit state (9) is satisfied; the
utilization of the cross-section is 65%. The graphs of
longitudinal strain and normal stress are shown in Figure 7.

Summary
In this paper we presented a scheme of static calculations of

the Klein slab, consisting of steel I-beams and a reinforced
ceramic slab. We presented formulas for the ultimate limit
capacity of a brick slab, which are not provided in the design
code [4]. The relationships are illustrated with working
examples drawn from the technical report of the existing
building [8].

Old Polish codes recommended performing calculations
using various methods [2], including the allowable stress
design method, which is more conservative than the limit state
design method. This means that, according to Eurocode [4],
existing Klein slabs can support higher loads than they were
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Fig. 7. Klein’s semi-heavy ceramic slab, made of perforated
brick, in a historic building at Starynkiewicza Square in
Warsaw. Geometry, strains and stresses in the ultimate limit
state
Rys. 7. Płyta półciężka stropu Kleina, wykonana z cegły dziuraw-
ki, w historycznym budynku przy placu Starynkiewicza w Warsza-
wie. Geometria, odkształcenia i naprężenia w stanie granicznym
nośności
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my PN-B, w których stosowano już metodę stanów gra-
nicznych, mogą generować wyniki zbliżone do Eurokodu,
mimo iż proponują inne obciążenia i współczynniki bez-
pieczeństwa.

Wzory (18), (19) i (20) są oszacowaniami konserwa-
tywnymi nośności płyty ceglanej, ponieważ zastosowano
model odcinkowo-liniowy, natomiast rzeczywisty przebieg
jest bardziej zbliżony do parabolicznego. Formuły analitycz-
ne w przypadku modelu parabolicznego są bardzo złożone.

W budynkach ze stropami Kleina problemem jest częsty
brak dokumentacji technicznej lub jej niekompletność. Kolej-
nym istotnym czynnikiem jest degradacja konstrukcji w trak-
cie użytkowania. Trzeba podkreślić, że ocena nośności stropu
Kleina wymaga ustalenia jego aktualnych parametrów geome-
tryczno-użytkowych, ogromną rolę pełnią więc badania stanu
faktycznego. Typowe badania diagnostyczne stropów Kleina
obejmują pomiar rozpiętości, rozstawu i przekroju belek sta-
lowych, typu i zbrojenia płyty ceramicznej oraz układu warstw
wykończeniowych. Parametry materiałowe stali profilowej
i zbrojeniowej zaleca się przyjmować na podstawie wytycz-
nych normowych/literaturowych, biorąc pod uwagę okres
wzniesienia obiektu. Taki zakres rozpoznania pozwala na wy-
konanie podstawowych obliczeń stropu Kleina.

Artykuł dotyczy stropów płaskich, natomiast zdarza się
także zastosowanie łukowych stropów Kleina. W przypadku,
gdy siła normalna w łuku jest wystarczająco mała, można jej
nie uwzględniać w obliczeniach. Norma [4] podaje uproszczo-
ny warunek ograniczający naprężenia normalne . W przeciw-
nym przypadku w przepisach podane są ogólne wy-
tyczne, np. stosowalność hipotezy płaskich przekrojów. Ozna-
cza to, że strop łukowy wymiaruje się analogicznie do słupów
żelbetowych. Podanie zamkniętych wzorów dotyczących
krzywej interakcji będzie jednak tematem odrębnej pracy.

Publikacja została sfinansowana z subwencji dziekana Wydziału
Inżynierii Lądowej Politechniki Warszawskiej.

Artykuł wpłynął do redakcji: 08.07.2025 r.
Otrzymano poprawiony po recenzjach: 10.09.2025 r.
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originally designed for. In turn, PN-B design codes, which
already use the limit state method, although they propose
different loads and safety factors, can generate results similar
to the Eurocode.

Formulas (18), (19) and (20) are conservative estimates of
the ultimate limit capacity of the brick slab cross-section
because a piecewise-linear model was used, while the actual
curve is more parabolic. The analytical formulas for the
parabolic model are very complex.

In buildings with Klein slabs, a frequent lack of technical
documentation or its incompleteness is a significant problem.
Another significant factor is the degradation of the structure
during use. It is important to emphasize that assessing the
ultimate limit capacity of a Klein slab requires determining its
current geometric and material parameters, so site
investigations play a crucial role. Typical diagnostic tests for
Klein slabs include measuring the span, spacing, and cross-
-section of steel beams; the type and reinforcement of the
ceramic slab; and the arrangement of floor layers. It is
recommended to adopt material parameters for the profile and
reinforcing steel based on codes or literature guidelines, taking
into account the period of erection of the building. This level
of analysis allows for basic calculations of the Klein slab.

The presented work concerns flat slabs, but Klein arched
slabs are also used. If the normal force in the arch is sufficiently
small, it can be omitted from the calculations – the code [4]
provides a simplified condition limiting normal stresses
(formula (6.26)). Otherwise, the regulations provide general
guidelines, for example, the applicability of the hypothesis of
flat cross-sections. This means that the arched floor is designed
analogously to reinforced concrete columns. However,
providing closed formulas for the interaction curve will be the
subject of a separate paper.
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