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R ozwój sieci drogowej i rosnące wymagania doty-
czące jej niezawodności powodują, że diagnostyka
konstrukcji nawierzchni zyskuje na znaczeniu. Jed-
nym z kluczowych czynników wpływających

na trwałość i bezpieczeństwo użytkowania asfaltu jest tempe-
ratura warstw asfaltowych. Wysoka temperatura powoduje
utratę sztywności mieszanki i wzrost odkształceń trwałych,
natomiast niska sprzyja powstawaniu pęknięć skurczowych
i zmęczeniowych. W warunkach zimowych temperatura po-
wierzchni jest głównym czynnikiem decydującym o oblodze-
niu drogi, co ma bezpośredni wpływ na bezpieczeństwo ru-
chu. W związku z tym dokładne poznanie, jak zmienia się tem-
peratura w czasie i na różnej głębokości, jest niezbędne
do oceny stanu technicznego nawierzchni oraz planowania
zabiegów utrzymaniowych.

W praktyce ocena nośności nawierzchni odbywa się za po-
mocą ugięciomierzy typu TSD (Traffic Speed Deflectometer)
i FWD (Falling Weight Deflectometer), które rejestrują ugię-
cie nawierzchni generowane pod wpływem przemieszczają-
cego się obciążenia. Wielkość odkształcenia zależy nie tylko
od rodzaju konstrukcji, lecz także od temperatury warstwy as-
faltowej. Brak korekty do temperatury odniesienia może pro-
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Abstract. Reliable knowledge of the temperature distribution
within asphalt pavements is essential for maintenance and
structural diagnosis. To forcast the asphalt layers temperature the
recurrent neural networks (RNN, including LSTM and BiLSTM)
and gradient-boosted decision trees (XGBoost) have been used
based on a multi-month field dataset (March – October) with
multi-depth temperature measurements and meteorological
variables. RNNs captured both diurnal fluctuations and seasonal
trends with high predictive accuracy. While the classical
XGBoost setup was slightly less precise, it offered very short
training times and greater interpretability; its depth-generalized
experimental variant enabled interpolation across the full depth
range with an error of ~0,97°C (R² ≈ 0,988). The findings support
hybridization (RNN + XGBoost) to combine temporal-pattern
extraction with efficient regression on static features (e.g., depth,
time-of-day).

Keywords: asphalt pavement; temperature distribution; machine
learning; RNN; LSTM; BiLSTM; XGBoost; interpolation;
temperature correction; FWD; TSD.

Streszczenie. Utrzymanie i diagnostyka nawierzchni asfalto-
wych wymagają wiarygodnej informacji o rozkładzie tempera-
tury w czasie i w głąb konstrukcji. Do prognozowania tempera-
tury warstw asfaltowych zastosowano rekurencyjne sieci neuro-
nowe (RNN, w tym LSTM i BiLSTM) oraz gradientowe mode-
le drzew decyzyjnych (XGBoost) na podstawie wielomiesięcz-
nych danych terenowych (marzec – październik) obejmujących
pomiary na wielu głębokościach oraz parametry meteorologicz-
ne. Modele RNN wiernie odwzorowały zarówno wahania dobo-
we, jak i sezonowe. XGBoost, choć w wariancie klasycznym nie-
co mniej precyzyjny, zapewnił bardzo krótki czas obliczeń
i większą interpretowalność; jego wariant eksperymentalny
z uogólnieniem po głębokości umożliwił interpolację tempera-
tury w całym zakresie badanych głębokości z błędem rzędu
~0,97°C (R² ≈ 0,988). Wyniki wskazują na zasadność hybrydy-
zacji podejść (RNN + XGBoost), łączącej identyfikację wzorców
czasowych z efektywną regresją po cechach statycznych (m.in.
głębokość, pora doby).
Słowa kluczowe: nawierzchnia asfaltowa; rozkład temperatury;
uczenie maszynowe; RNN; LSTM; BiLSTM; XGBoost; inter-
polacja; korekcja temperaturowa; FWD; TSD.
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D evelopment of the road network and increasing
requirements regarding its reliability mean that
pavement structural diagnostics is gaining in
importance. One of the key factors influencing the

durability and safety of asphalt use is the temperature of asphalt
layers. High temperature causes a loss of mixture stiffness and
an increase in permanent deformations, whereas low
temperature promotes the formation of shrinkage and fatigue
cracks. Under winter conditions, surface temperature is the
main factor determining road icing, which has a direct impact
on traffic safety. Therefore, accurate knowledge of how
temperature changes over time and at different depths is
necessary for assessing the technical condition of the pavement
and for planning maintenance treatments.

In practice, pavement bearing capacity is assessed using
TSD (Traffic Speed Deflectometer) and FWD (Falling Weight
Deflectometer) deflectometers, which record pavement
deflection generated under a moving load. The magnitude of
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wadzić do błędów w ocenie stanu sieci drogowej na pozio-
mie wskaźnikowym. Precyzyjna prognoza rozkładu tempera-
tury nawierzchni umożliwia zatem zarówno prawidłowe prze-
liczenie ugięcia, jak i lepsze planowanie zabiegów utrzyma-
niowych.

Dotychczas stosowane modele fizyczne przewidujące tem-
peraturę bazowały na równaniach przewodnictwa cieplnego
i wymagały wprowadzenia wielu danych wejściowych, co
ogranicza ich użyteczność w praktyce. Proste modele regre-
syjne korzystały z linearnej zależności między temperaturą
nawierzchni a temperaturą powietrza, prędkością wiatru czy
opadami, ale nie uwzględniały długiej pamięci cieplnej war-
stwy asfaltowej i nieliniowości zachodzących zmian.
W ostatnich latach zwiększa się zainteresowanie wyko-
rzystaniem metod data-mining i uczenia maszynowego
do modelowania procesów inżynierskich. Rekurencyjne
sieci neuronowe (RNN – Recurrent Neural Network), zwłasz-
cza ich odmiany LSTM (Long Short-Term Memory) i GRU
(Gated Recurrent Unit), potrafią uczyć się długoterminowych
zależności i lepiej odwzorować dynamikę zmian temperatu-
ry niż modele statystyczne. Jednocześnie rozwijane są regre-
syjne modele drzew decyzyjnych, takie jak RF (Random Fo-
rest), które łączą interpretowalność z możliwością modelowa-
nia nieliniowych zależności. W ostatnich latach pojawiły się
również modele hybrydowe, łączące elementy fizyki z ucze-
niem maszynowym.

W artykule przedstawiono zastosowanie rekurencyjnych
sieci neuronowych oraz regresyjnego modelu drzew decyzyj-
nych do prognozowania rozkładu temperatury w przekroju
konstrukcji nawierzchni drogowej. Modele kalibrowano
na podstawie danych z terenowych pomiarów temperatury
wykonywanych na specjalnie przygotowanym stanowisku ba-
dawczym. W ciągu roku rejestrowano temperaturę nawierzch-
ni na różnej głębokości oraz inne dane meteorologiczne. Ce-
lem analizy było porównanie dokładności obu podejść i oce-
na ich przydatności w diagnostyce sieci drogowej, zwłaszcza
w kontekście korekty ugięcia.

Przegląd metod
Prognozowanie temperatury w konstrukcjach asfaltowych

tradycyjnie bazuje na modelach fizycznych przewodnictwa
cieplnego i bilansu energii, które przy odpowiednio zdefinio-
wanych warunkach brzegowych zapewniają wierność opisu
[1 – 4]. W praktyce ich użyteczność ograniczają jednak para-
metry wejściowe (m.in. albedo, współczynniki przejmowania
ciepła) i wrażliwość na zmienność meteorologiczną, co utrud-
nia kalibrację i zastosowania operacyjne. Powszechnie
stosowane formuły empiryczne (np. BELLS) pozostają pro-
ste, lecz dają umiarkowaną dokładność i wymagają dalszej
optymalizacji [5 – 6].

Zwiększająca się dostępność danych terenowych sprzyja
podejściu data-driven. Wstępne próby oparte na regresji wie-
lorakiej nie uchwyciły bezwładności cieplnej i nieliniowości
procesu [6 – 9]. Rekurencyjne sieci neuronowe (RNN),
zwłaszcza LSTM i ich odmiany dwukierunkowe (BiLSTM),
pozwalają uczyć się długoterminowych zależności i popraw-

deformation depends not only on the type of structure but also
on the temperature of the asphalt layer. A lack of correction
to the reference temperature may lead to errors in assessing
the condition of the road network at the network-level
indicator scale. Precise prediction of the pavement
temperature distribution thus makes it possible both to
correctly recalculate deflection and to better plan
maintenance treatments.

The physical models used so far to predict temperature were
based on heat conduction equations and required the
introduction of many input data, which limits their usefulness
in practice. Simple regression models relied on a linear
relationship between pavement surface temperature and air
temperature, wind speed or precipitation, but they did not take
into account the long thermal memory of the asphalt layer and
the nonlinearity of the occurring changes. In recent years,
there has been increasing interest in the use of data-mining
and machine-learning methods for modelling engineering
processes. Recurrent neural networks (RNN – Recurrent
Neural Network), especially their LSTM (Long Short-Term
Memory) and GRU (Gated Recurrent Unit) variants, are capable
of learning long-term dependencies and better reproducing the
dynamics of temperature changes than statistical models.At the
same time, regression decision-tree models such as RF (Random
Forest) are being developed, which combine interpretability
with the ability to model nonlinear relationships. In recent years,
hybrid models have also appeared, combining elements of
physics with machine learning.

This paper presents the application of recurrent neural
networks and a regression decision-tree model to predict the
temperature distribution in the cross-section of a road
pavement structure. The models were calibrated on the basis
of data from field temperature measurements carried out at a
specially prepared test site. Over the course of a year, pavement
temperature was recorded at various depths together with other
meteorological data. The aim of the analysis was to compare
the accuracy of both approaches and to assess their usefulness
in the diagnostics of the road network, in particular in the
context of deflection correction.

Review of methods
Prediction of temperature in asphalt pavement structures

has traditionally been based on physical models of heat
conduction and energy balance, which, under appropriately
defined boundary conditions, ensure accuracy of description
[1 – 4]. In practice, however, their usefulness is limited by input
parameters (including albedo, heat-absorption coefficients)
and sensitivity to meteorological variability, which hinders
calibration and operational application. Widely used empirical
formulas (e.g., BELLS) remain simple but provide moderate
accuracy and require further optimisation [5 – 6].

The increasing availability of field data favours a data-
driven approach. Preliminary attempts based on multiple
regression did not capture the thermal inertia and nonlinearity
of the process [6 – 9]. Recurrent neural networks (RNN),
especially LSTM and their bidirectional variants (BiLSTM),
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nie odtwarzać wahania dobowe oraz sezonowe; wymagają
jednak ciągłych, znormalizowanych szeregów czasowych
i dłuższego treningu [4, 14, 15, 20, 21]. Jednocześnie rozwi-
jano modele drzewiaste: lasy losowe i wzmacnianie gradien-
towe (GBM, XGBoost), które łączą dużą siłę aproksymacyj-
ną z interpretowalnością i krótkim czasem uczenia [10 – 12].
W zastosowaniach drogowych wykazano, że boosted trees
mogą przewyższać klasyczne procedury korekcyjne tempera-
tury warstw asfaltowych, a uczenie maszynowe stanowi war-
tościową alternatywę dla schematów empirycznych w kontek-
ście FWD/TSD [5, 13]. Modelom tablicowym trzeba „dopi-
sać pamięć” przez inżynierię cech (lagi, kodowanie czasu),
aby emulować przetwarzanie sekwencji. Nowsze prace eks-
plorują podejścia hybrydowe: fizycznie informowane sieci
neuronowe (PINN) integrują równania przewodnictwa ciepl-
nego z danymi, umożliwiając jednoczesne szacowanie para-
metrów materiałowych i rozkładu temperatury [16]; inne roz-
wiązania łączą komponenty neuronowe i drzewiaste bądź włą-
czają klasyczne formuły korekcyjne jako wejścia, uzyskując
zysk dokładności względem pojedynczych metod [17, 18].
Mimo postępów, wiele badań bazuje na krótkich kampaniach
i specyficznych warunkach lokalnych, co podkreśla potrzebę
systematycznych porównań na dłuższych, terenowych szere-
gach czasowych oraz oceny przydatności modeli w praktyce
(np. normalizacja ugięć FWD/TSD). Przegląd w [6] akcentu-
je niedostatek analiz opartych na długich, spójnych ciągach
pomiarowych oraz na zróżnicowanych warunkach klimatycz-
nych i konstrukcyjnych, co ogranicza porównywalność wnio-
sków. Z kolei praca [13] wykazała przewagę boosted trees
nad empirycznym BELLS3 w szacowaniu temperatury warstw
w przypadku korekcji FWD/TSD, lecz dotyczyła pojedyn-
czej lokalizacji i nie obejmowała systematycznej konfronta-
cji z modelami sekwencyjnymi. W świetle tych obserwacji ar-
tykuł wypełnia zidentyfikowaną lukę przez bezpośrednie po-
równanie RNN i XGBoost na rocznych danych terenowych
oraz omówienie implikacji wdrożeniowych.

Zebrane źródła dowodzą, że metody uczenia maszynowe-
go, zarówno rekurencyjne sieci neuronowe, jak i ensemble
drzew znacznie przewyższają klasyczne modele regresyjne
w prognozowaniu temperatury warstw asfaltowych i tym samym
w korekcji ugięć FWD/TSD. Większość dotychczasowych ba-
dań opiera się jednak na danych z krótkotrwałych ekspery-
mentów i rzadko uwzględnia lokalne warunki klimatyczne
oraz specyfikę nawierzchni. Brakuje modeli kalibrowanych
na długoterminowych danych meteorologicznych i na cią-
głych, terenowych pomiarach temperatury. Nie przeprowa-
dzono systematycznego porównania efektywności RNN i mo-
deli drzewiastych na takich danych, dlatego nie wiadomo,
która technika lepiej radzi sobie z lokalną zmiennością klima-
tu, jakie cechy są najważniejsze i jak przekłada się to na do-
kładność korekcji ugięć. Artykuł ma na celu wypełnienie tej
luki. Wykorzystuje i porównuje rekurencyjne sieci neurono-
we oraz modele oparte na drzewach (random forest, gradient
boosting) bazujących na danych z rocznego monitoringu me-
teorologicznego i pomiarów terenowych, oceniając jednocze-
śnie ich przydatność do diagnostyki nośności nawierzchni
sieci drogowych.

make it possible to learn long-term dependencies and
correctly reproduce diurnal and seasonal fluctuations;
however, they require continuous, normalised time series and
longer training [4, 14, 15, 20, 21]. At the same time, tree-
-based models have been developed: random forests and
gradient boosting (GBM, XGBoost), which combine strong
approximation capability with interpretability and short
training time [10 – 12]. In road applications it has been shown
that boosted trees can outperform classical procedures for
temperature correction of asphalt layers and that machine
learning represents a valuable alternative to empirical
schemes in the context of FWD/TSD [5, 13]. Table-based
models must be “given memory” through feature engineering
(lags, time encoding) in order to emulate sequence
processing. More recent work explores hybrid approaches:
physics-informed neural networks (PINN) integrate heat-
-conduction equations with data, enabling simultaneous
estimation of material parameters and temperature
distribution [16]; other solutions combine neural and tree-
-based components or incorporate classical correction
formulas as inputs, achieving improved accuracy over single
methods [17, 18]. Despite progress, many studies rely on
short campaigns and specific local conditions, which
highlights the need for systematic comparisons on longer,
field-based time series and evaluation of model usefulness in
practice (e.g., FWD/TSD deflection normalisation). The
review in [6] emphasises the lack of analyses based on long,
consistent measurement sequences and diverse climatic and
structural conditions, which limits the comparability of
results. Likewise, the study [13] demonstrated the advantage
of boosted trees over the empirical BELLS3 in estimating
layer temperature for FWD/TSD correction, but it concerned
a single location and did not include systematic confrontation
with sequence models. In light of these observations, the
present article fills the identified gap by a direct comparison
of RNN and XGBoost on year-long field data and discussion
of implementation implications.

The collected sources demonstrate that machine-learning
methods, both recurrent neural networks and tree ensembles,
significantly outperform classical regression models in
predicting asphalt-layer temperatures and thereby in
FWD/TSD temperature correction. Most existing studies,
however, rely on data from short experiments and seldom
account for local climatic conditions and pavement
characteristics. There is a lack of models calibrated on long-
term meteorological data and continuous field temperature
measurements. No systematic comparison of RNN and tree-
-based model performance on such data has been conducted,
and thus it remains unclear which technique better handles
local climate variability, which features are most important, and
how this translates into correction accuracy. The purpose of this
paper is to fill this gap. It employs and compares recurrent
neural networks and tree-based models (random forest,
gradient boosting) based on year-long meteorological
monitoring and field measurements, simultaneously assessing
their usefulness for evaluating the structural condition of road
pavements.
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Opis danych i przygotowanie zbioru
Opis stanowiska badawczego. Dane do analizy pochodzi-

ły z specjalnie przygotowanego stanowiska badawczego, obej-
mującego sieć czujników zainstalowanych w nowej konstruk-
cji nawierzchni asfaltowej oraz stację meteorologiczną. Pomia-
ry temperatury realizowano termometrami platynowymi Pt100
rezystancyjnymi klasy A (zgodnie z normą IEC 60751),
umieszczonymi na docelowej głębokości profilu (0, 2, 6, 10,
16, 22 cm). Czujniki wprowadzano podczas wbudowywania
każdej nowej warstwy konstrukcji nawierzchni przez wąskie
nacięcie. Konstrukcja nawierzchni miała następujący układ
warstw: kruszywo łamane stabilizowane mechanicznie (war-
stwa podbudowy pomocniczej); podbudowa z betonu asfalto-
wego BA 25 z asfaltem 35/50; warstwa wiążąca AC16W z as-
faltem DE 30B oraz warstwa ścieralna SMA 12 o grubo-
ści 4 cm z asfaltem OL30B. Stanowisko badawcze przygoto-
wano jako odcinek wyłączony z ruchu, co ograniczyło ryzyko
uszkodzeń przewodów i przemieszczeń czujników. W ten spo-
sób zminimalizowano również wpływ procesów przyspieszo-
nego starzenia materiału i uszkodzeń lokalnych, które oddzia-
łują na właściwości termiczne nawierzchni. Wyłączenie bada-
nego odcinka z ruchu oraz zastosowanie jednorodnej konstruk-
cji pozwoliło wyeliminować niepożądane zakłócenia, dzięki
czemu rejestrowane profile temperatury odzwierciedlały głów-
nie warunki meteorologiczne oraz bezwładność cieplną ukła-
du warstw. Dane zbierano w okresie od marca do październi-
ka, co dało 10 531 obserwacji w 30‑minutowych odstępach.
Rejestrowano temperaturę w sześciu punktach profilu warstw
asfaltowych: na powierzchni (0 cm) oraz na głębokości
2, 6, 10, 16 i 22 cm. Dodatkowo zapisywano prędkość i kieru-
nek wiatru, wilgotność względną, temperaturę powietrza
na różnych wysokościach, punkt rosy, dobowy opad oraz eks-
tremalne wartości temperatury dobowej. Każdy rekord zawie-
rał zatem zarówno zmienne meteorologiczne, jak i temperatu-
rę w warstwach asfaltowych. Rozmieszczenie sond w kolej-
nych warstwach umożliwiało odtworzenie pionowego profi-
lu temperatury i analizę wymiany ciepła między warstwami.
Uzyskane dane posłużyły jako podstawowy zbiór wejściowy
do budowy modeli uczenia maszynowego. Wartości progno-
zowanych temperatur na głębokości miały charakter zmien-
nych zależnych. Natomiast rolę predyktorów stanowiły
zmienne o charakterze środowiskowym: temperatura po-
wierzchni nawierzchni oraz wilgotność. Wszystkie dane zo-
stały zsynchronizowane przez przypisany krok interwału cza-
sowego. Analizowany zbiór wejściowy miał charakter szere-
gu czasowego – każda obserwacja była rejestrowana w okre-
ślonym momencie, a zmienne wejściowe wykazywały zależ-
ność od cyklu dobowego oraz sezonowego (czasowego).

Zanim przystąpiono do modelowania, wykonano analizę
jakości zbioru danych. Wstępna ocena struktury zbioru wska-
zała na silne skorelowanie temperatury na głęboko-
ści: 2, 6, 10, 16 i 22 cm z temperaturą odczytaną na powierzch-
ni (h = 0 cm) i wilgotnością. Pozostałe cechy wykazywały
mniejszy związek korelacyjny. Redukcja ilości cech wejścio-
wych miała bardzo duże znaczenie, gdyż jednym z celów
opracowania skutecznego modelu była możliwość zagospo-
darowania łatwo dostępnych danych środowiskowych. Zatem

Data description
and dataset preparation

Description of the test site. The data for the analysis came
from a specially prepared test site comprising a network of
sensors installed in a new asphalt pavement structure and a
meteorological station. Temperature measurements were
performed using platinum resistance thermometers Pt100 of
class A (in accordance with IEC 60751), placed at the target
depths of the profile (0, 2, 6, 10, 16, 22 cm). The sensors were
installed during the construction of each new pavement layer
by means of a narrow cut. The pavement structure had the
following layer arrangement: mechanically stabilised crushed
aggregate (auxiliary base course); base course of asphalt
concrete BA 25 with 35/50 asphalt; binder course AC16W
with DE 30B asphalt and wearing course SMA 12 with a
thickness of 4 cm with OL30B asphalt. The test section was
prepared as a segment closed to traffic, which limited the risk
of cable damage and sensor displacement. In this way, the
influence of accelerated material ageing processes and local
damage, which affect the thermal properties of the pavement,
was also minimised. Closing the tested section to traffic and
using a homogeneous structure made it possible to eliminate
undesirable disturbances, so that the recorded temperature
profiles reflected mainly meteorological conditions and the
thermal inertia of the layer system. The data were collected
from March to October, which yielded 10 531 observations
at 30-minute intervals. Temperature was recorded at six
points in the asphalt-layer profile: at the surface (0 cm) and
at depths of 2, 6, 10, 16 and 22 cm. In addition, wind speed
and direction, relative humidity, air temperature at different
heights, dew point, daily precipitation and extreme daily
temperature values were recorded. Each record therefore
contained both meteorological variables and temperature in
the asphalt layers. The arrangement of the probes in
successive layers made it possible to reconstruct the vertical
temperature profile and analyse heat exchange between
layers. The obtained data served as the basic input dataset for
building machine learning models. The values of the
predicted temperatures at depth were treated as dependent
variables. In turn, the predictors were environmental
variables: pavement surface temperature and humidity. All
data were synchronised using the assigned time-interval step.
The analysed input dataset had the character of a time series
– each observation was recorded at a specific moment, and
the input variables showed dependence on the diurnal and
seasonal (temporal) cycle.

Before modelling was undertaken, a data quality analysis
was carried out. The initial assessment of the dataset
structure indicated strong correlation of the temperature at
depths of 2, 6, 10, 16 and 22 cm with the temperature read
at the surface (h = 0 cm) and with humidity. The remaining
features showed a weaker correlation relationship. Reducing
the number of input features was very important, since one
of the aims of developing an effective model was the
possibility of using easily available environmental data.
Therefore, forecasting the temperature at a given depth
required the use of direct features that are easy to obtain over
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prognozowanie temperatury na danej głębokości wymagało
zastosowania cech bezpośrednich, łatwych do pozyskania
w okresie pomiaru od kilku do kilkunastu godzin wstecz.

Dokonano również sprawdzenia danych pod kątem liczby
ważnych obserwacji, wartości odstających i nadmiarowości
(tabela 1). Wartości odstające określono na podstawie 95‑pro-
centowego przedziału ufności w przypadku średniej. Nato-
miast redundancję cech (predyktorów) oceniano statystyką
Pearsona w taki sam sposób jak w przypadku analizy składo-
wych głównych. Większość zmiennych meteorologicznych
(prędkość wiatru, kierunek wiatru, wilgotność, temperatura
powietrza) miała ok. 93% ważnych obserwacji i niewiele war-
tości odstających. Dane opisujące opad deszczu zawierały

ok. 15,5% wartości odstających, co sugeruje, że intensywne
opady występowały rzadko i miały charakter incydentalny.

Oznaczenie P4 to identyfikator punktu pomiarowego. Jest to
sufiks, do którego została przypisana głębokość umiejscowie-
nia sondy pomiarowej. Niektóre odczyty temperatury w na-
wierzchni, w tym predyktory w zbiorze danych, odznaczały się
brakiem danych. Ich ilość wynosiła ok. 6,8%, co można uznać
za poziom akceptowalny. Niemniej jednak modele uczenia ma-
szynowego, takie jak RNN (i jego warianty jak LSTM, GRU),
wymagają ciągłych, sekwencyjnych danych wejściowych [20],
w przeciwnym razie braki danych zaburzą kolejność czasową
oraz zwiększą ryzyko przeuczenia. W związku z tym, że liczba
braków była niewielka, zastosowano do ich uzupełnienia filtr
Kalmana [19, 21] skuteczny przy szeregach czasowych. Po wy-
pełnieniu luk w zbiorze wejściowym filtrem Kalmana, będących
efektem eliminacji wartości odstających o charakterze błędu od-
czytu, wszystkie zmienne numeryczne zostały znormalizowane.

Dzięki przeprowadzonej standaryzacji, uzupełnieniu da-
nych i selekcji predyktorów przygotowano spójny zbiór, któ-
ry posłużył do trenowania modeli rekurencyjnych sieci neu-
ronowych i gradientowych drzew losowych. Wyboru technik
filtracji i selekcji cech dokonano w kontekście wcześniej-
szych badań z literatury [17].

the period from several to several dozen hours back from the
measurement.

Data were also checked in terms of the number of valid
observations, outliers and redundancy (Table 1). Outliers were
determined on the basis of the 95 percent confidence interval
for the mean. Redundancy of features (predictors) was assessed
using Pearson statistics in the same way as in principal
component analysis. Most meteorological variables (wind
speed, wind direction, humidity, air temperature) had about
93% valid observations and few outliers. The data describing
rainfall contained about 15.5% outliers, which suggests that
intense precipitation occurred rarely and had an incidental
character.

The designation P4 is the identifier of the measurement
point. It is a suffix to which the depth of the measurement
probe location was assigned. Some pavement temperature
readings, including predictors in the dataset, were characterised
by missing data. Their amount was about 6.8%, which can be
regarded as an acceptable level. Nevertheless, machine learning
models such as RNN (and its variants such as LSTM, GRU)
require continuous, sequential input data [20]; otherwise,
missing data will disturb the temporal order and increase the
risk of overfitting. Since the number of gaps was small, the
Kalman filter [19, 21], which is effective for time series, was
used to fill them. After filling gaps in the input dataset with the
Kalman filter, resulting from the elimination of outliers of the
nature of reading errors, all numerical variables were
normalised.

Thanks to the standardisation performed, the filling in of data
and the selection of predictors, a consistent dataset was
prepared, which was used to train recurrent neural network
models and gradient random trees. The choice of filtering and
feature selection techniques was made in the context of earlier
studies from the literature [17].

Table 1. Data quality check report
Tabela 1. Raport sprawdzenia jakości danych

Variable/Zmienna Scale type/Typ skali Number of valid/
Nr ważnych % N Number of outliers/

Liczba odstających
Percentage of outliers/
Procent odstających

Variable quality/
Jakość zmiennej

Wind speed/Prędkość wiatru quantitative/ilościowy 9814 93,2 1 0,01 outlying/odstające

Wind direction/Kierunek wiatru quantitative/ilościowy 9814 93,2 0 0 OK

Humidity/Wilgotność quantitative/ilościowy 9814 93,2 0 0 OK

Temp_300cm quantitative/ilościowy 9814 93,2 0 0 redundant/nadmiarowe

Temp_20cm quantitative/ilościowy 9814 93,2 0 0 redundant/nadmiarowe

Temp_0cm quantitative/ilościowy 9814 93,2 0 0 OK

Dewpoint/Punkt rosy quantitative/ilościowy 9814 93,2 0 0 OK

Rainfall/Opad quantitative/ilościowy 9814 93,2 1518 15,5 outlying/odstające

P4_22 cm quantitative/ilościowy 10531 100 0 0 OK

P4_16cm quantitative/ilościowy 10531 100 0 0 redundant/nadmiarowe

P4_10cm quantitative/ilościowy 10531 100 0 0 redundant/nadmiarowe

P4_6cm quantitative/ilościowy 10531 100 0 0 redundant/nadmiarowe

P4_2cm quantitative/ilościowy 10531 100 0 0 redundant/nadmiarowe
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Architektura i parametry wybranych modeli
Projekt bazował na dwóch modelach: rekurencyjnych sie-

ciach neuronowych (RNN) z warstwami LSTM oraz gradiento-
wych modelach drzew decyzyjnych (XGBoost). Pierwszy z nich
wykorzystano do przetwarzania sekwencji czasowych, drugi
do analizy danych tabelowych z opóźnieniami (lagami). Szcze-
gółowo omówiono architekturę modeli, proces przygotowania
danych, parametry uczenia oraz wyniki na zbiorach testowych.
W rezultacie jako predyktory stanowiły zbiór zmiennych:

■ temperatura powierzchni na nawierzchni asfaltowej;
■ wilgotność powietrza.

Natomiast wartościami poszukiwanymi (zmienne zależne)
była temperatura na zdefiniowanej głębokości nawierzch-
ni: 2, 6, 10, 16 i 22 cm. Interpolacja na głębokości pomiędzy
punktami pomiarowymi wymaga interpolacji liniowej. Ostat-
nia postać modelu uwzględniała zmienną głębokość pozwa-
lającą na interpolację temperatury na dowolnej głębokości.
Wszystkie modele oceniano za pomocą czterech metryk:
współczynnika determinacji (R2); pierwiastka błędu średnio-
kwadratowego (RMSE); średniego procentowego błędu pro-
gnozy (MAPE); średniego błędu bezwzględnego (MAE).

Rekurencyjne sieci neuronowe (RNN/LSTM) są przysto-
sowane do analizy szeregów czasowych, ponieważ w każdym
kroku aktualizują ukryty stan, który przenosi informację z po-
przednich obserwacji. Zastosowana w projekcie architektura
LSTM umożliwia modelowi uczenie się długoterminowych
zależności, wykorzystując mechanizmy bramkujące, które
kontrolują przepływ informacji. Przygotowanie danych pole-
gało na utworzeniu sekwencji o długości 3 h (6 próbek) zło-
żonych z wartości temperatury powierzchni (temp_0 cm)
i wilgotności oraz na normalizacji zmiennych wejściowych.

W ramach wstępnych prób zbudowano dwie architektury
odniesienia: MODEL1 (pojedyncza warstwa LSTM, 256 neu-
ronów) oraz MODEL2 (układ z dwiema warstwami LSTM
z regularyzacją dropout). Oba warianty potwierdziły przy-
datność podejścia sekwencyjnego do odwzorowania wahań
dobowych i sezonowych, przy czym MODEL2 przyniósł
umiarkowany wzrost jakości w porównaniu z MODEL1 (zysk
rzędu kilku punktów procentowych R² i redukcja RMSE
o ok. 1°C). Ze względu na kompromis między wiernością
odwzorowania a złożonością, jako model referencyjny do dal-
szych analiz przyjęto architekturę dwukierunkową MODEL3.
Porównanie charakterystyki modeli przedstawiono w tabeli 2.

Model opisany jako MODEL3 wprowadza dwukierunkowe
LSTM (BiLSTM), które przetwarzają sekwencję zarówno
w kierunku rosnącej, jak i malejącej osi czasu. Wyniki z obu
kierunków są łączone (concatenate) i przekazywane do
warstw gęstych. Model zawierał dwie warstwy LSTM (jed-

Architecture and parameters of the selected
models

The project was based on two models: recurrent neural
networks (RNN) with LSTM layers and gradient-boosted
decision-tree models (XGBoost). The first of these was used
for processing time sequences, and the second for analysing
tabular data with delays (lags). The architecture of the models,
the data-preparation process, the learning parameters and the
results on test datasets are discussed in detail. As predictors,
the following variables were used:

■ pavement surface temperature on the asphalt pave-
ment,

■ air humidity.
In turn, the sought values (dependent variables) were the

temperatures at defined pavement depths: 2, 6, 10, 16 and 22 cm.
Interpolation at depths between measurement points requires
linear interpolation. The final form of the model included the
variable depth, allowing temperature interpolation at any
depth. All models were evaluated using four metrics:
coefficient of determination (R2); root mean square error
(RMSE); mean absolute percentage error (MAPE); and mean
absolute error (MAE).

Recurrent neural networks (RNN/LSTM) are suited for
analysing time series, because in each step they update a
hidden state which carries information from previous
observations. The LSTM architecture applied in the project
enables the model to learn long-term dependencies by using
gating mechanisms that control the flow of information.
Data preparation consisted of creating sequences of 3 h
(6 samples) composed of the values of pavement surface
temperature (temp_0 cm) and humidity, and in normalising
input variables.

Two baseline architectures were built in the initial trials:
MODEL1 (a single LSTM layer, 256 neurons) and MODEL2
(a system with two LSTM layers with dropout regularisation).
Both variants confirmed the usefulness of the sequential
approach for reproducing diurnal and seasonal fluctuations,
with MODEL2 bringing a moderate improvement in quality
compared with MODEL1 (a gain of several percentage points
of R2 and an RMSE reduction of approx. 1°C). Due to the
compromise between fidelity of reproduction and complexity,
the bidirectional architecture MODEL3 was adopted as the
reference model for further analyses. The comparison of model
characteristics is shown in Table 2.

The model described as MODEL3 introduces bidirectional
LSTM (BiLSTM), which process the sequence both in the di-
rection of increasing and decreasing time. The results from
both directions are concatenated and passed to dense layers.

Table 2. Characteristics of the adopted RNN models
Tabela 2. Charakterystyka przyjętych modeli RNN

Model Input data (predictors)/
Dane wejściowe (predyktory)

Sequence length (time window)/
Długość sekwencji (okno czasowe)

Output data (predicted variable)/Dane wyjściowe
(zmienna prognozowana)

LSTM (MODEL1,
MODEL 2)

temp_0 cm, humidity/temp_0 cm,
wilgotność

6 steps × 30 min (3 h)/
6 kroków × 30 min (3 h)

temperature at the given depth h at time t/temperatura na
zadanej głębokości h w chwili t

BiLSTM+LSTM
(MODEL3)

temp_0 cm, humidity/temp_0 cm,
wilgotność

6 steps × 30 min (3 h)/
6 kroków × 30 min (3 h)

temperature at the given depth h at time t/temperatura na
zadanej głębokości h w chwili t
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na dwukierunkowa: BiLSTM +
jedna jednokierunkowa: LSTM)
i jedną warstwę gęstą z łączną
liczbą parametrów 682 561 (ta-
bela 3). Oprócz dwukierun-
kowej warstwy LSTM, która su-
marycznie miała 512 neuronów,
model zapewniał również war-
stwę typu batch_normalization ()
mającą na celu uwzględnienie
etapu normalizacji w celu popra-
wy stabilności uczenia. W efekcie
można było uniknąć dodatkowej
normalizacji zmiennych i zapisu
serii wyników tego procesu zgro-
madzonego w obiekcie recipe ().
W celu poprawy prognozy zmia-
ny temperatury wprowadzono
drugą klasyczną warstwę LSTM
(lstm_14) o liczbie neuronów 64.
Trening przeprowadzono z ana-
logicznymi ustawieniami jak
wcześniej, ale dzięki zastosowa-
niu wczesnego zatrzymywania
(patience = 30) liczba epok nie
przekroczyła 70 (rysunek 1).

Jakość dopasowania danych modelowych w MODEL3
do eksperymentalnych nie uległa znacznej poprawie
w porównaniu do MODEL2. Maksymalny błąd estymacji wy-
niósł 3,28°C, natomiast jakość dopasowania R2 była > 0,81,
a w większości przypadków > 0,9. Zbiorcze rezultaty metryk
jakości dopasowania przedstawiono w tabeli 4.

The model included two LSTM
layers (one bidirectional: BiL-
STM, and one unidirectional:
LSTM) and one dense layer,
with a total of 682 561 parame-
ters (Table 3). In addition to the
bidirectional LSTM layer,
which had 512 neurons in total,
the model also provided a batch-
-normalisation layer () aimed at
including the normalisation sta-
ge to improve learning stability.
As a result, additional normali-
sation of variables and saving of
the series of results of this pro-
cess stored in the recipe () object
were avoided. To improve the
prediction of temperature chan-
ge, a second classical LSTM
layer (lstm_14) with 64 neurons
was introduced. Training was
carried out with the same set-
tings as before, but thanks to the
use of early stopping (patience
= 30), the number of epochs did
not exceed 70 (Figure 1).

The quality of fitting model-based data in MODEL3 to the
experimental data did not significantly improve compared to
MODEL2. The maximum estimation error was 3.28°C,
whereas the fitting quality R2 was > 0.81, and in most cases
> 0.9. The summary results of the fit-quality metrics are
presented in Table 4.

Table 3. Final architecture of MODEL3
Tabela 3. Architektura końcowa MODEL3

Layer (type)/
Warstwa (typ)

Output
Shape/Kształt

wyjścia

Parame-
ters/Para-

metry

Trainable/
Podlegające

uczeniu

bidirectional_4 (Bidirectional/
Dwukierunkowy) (none, 6, 512) 530432 Y

batch_normalization_15 (Batch
Normalization/Normalizacja
wsadowa)

(none, 6, 512) 2048 Y

activation_15 (Activation) (none, 6, 512) 0 Y

dropout (Dropout/Warstwa
odrzucania) (none, 256) 0 Y

lstm_14 (LSTM layer/
Warstwa LSTM) (none, 64) 147712 Y

batch_normalization_14 (Batch
Normalization/Normalizacja
wsadowa)

(none, 64) 256 Y

activation_14 (Activation/
Aktywacja) (none, 64) 0 Y

dense_15 (Dense/Warstwa gęsta) (none, 32) 2080 Y

dense_14 (Dense/Warstwa gęsta) (none, 1) 33 Y

Total params/liczba parametrów: 682561 (2.60 MB)
Trainable params/Parametry podlegające uczeniu: 681409 (2.60 MB)
Non-trainable params/Parametry niepodlegające uczeniu: 1152 (4.50 KB)
None = batch size/rozmiar partii (batch), 6 = sequence length/długość sekwencji
(6 steps/6 kroków × 30 min = 3 h), 512 = number of features/outputs per step after
BiLSTM/liczba cech/wyjść na krok po warstwie BiLSTM.

Fig. 1. RNN model training graph (MODEL3)
Rys. 1. Wykres trenowania modelu RNN (MODEL3)
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Wyniki w tabeli 4 świadczą o bardzo dobrej skuteczności
techniki RNN do prognozowania zmian temperatury, w których
dane wykazują zależność od trendów czasowych. Jedyną zale-
tą stosowania MODEL3 sieci dwukierunkowej było znaczne
ograniczenie czasu treningu w postaci liczby epok do uzyska-
nia ostatecznej postaci modelu w stosunku do MODEL1 i MO-
DEL2. Maksymalny błąd MAPE był mniejszy niż 13,87%.
Analiza wyników pozwoliła stwierdzić, że skuteczność tech-
niki RNN o charakterze dwukierunkowych w MODEL3 oka-
zała się być taka sama jak w MODEL2. Pozwoliła ona na zi-
dentyfikowanie zarówno wahań dobowych, jak i sezonowego
rozkładu temperatury. Prognoza została uzyskana na podstawie
pomiaru temperatury i wilgotności z okresu 3 h wstecz.

Gradientowo wzmacniane modele drzew decyzyjnych XG-
Boost stanowią drugą kategorię zastosowanych algorytmów.
Główną ideą jest tworzenie ciągu prostych drzew, z których każ-
de kolejne jest zbudowane do predykcji reszt generowanych przez
poprzednie [12]. Można udowodnić, że taka procedura „addytyw-
nego rozwinięcia ważonego” drzew pozwoli w efekcie na dosko-
nałe dopasowanie wartości przewidywanych do wartości obser-
wowanych, nawet jeśli sama natura relacji pomiędzy predykto-
rami a zmienną zależną jest bardzo złożona (np. nieliniowa).
Główną zaletą stosowania tej techniki jest jej zmniejszona wraż-
liwość na brakujące dane oraz wykonanie opcjonalnego skalowa-
nia danych. W przypadku dużego zbioru danych pominięcie te-
go etapu jest komfortowe, co wynika z faktu, że w każdej chwi-
li można interpretować w pełni wyniki zmiennej wyjściowej (ten-
sora y). Niemniej jednak jest to technika prognozująca daną war-
tość tensora y względem predyktorów znajdujących się w tym sa-
mym rekordzie. Zatem struktura sekwencji czasowych jak w sie-
ciachRNNniema tuzastosowania.Budowa takiegomodeludrzew
wzmacnianych wymagała dodatkowych zabiegów związanych
z transformacją danych. Polegało to na zastosowaniu dodatkowych
zmiennych w postaci opóźnień, tzw. lagów. Budowanie lagów po-
lega na tworzeniu nowych cech, które reprezentują wartość danej
zmiennej z poprzednich kroków czasowych. W skrypcie języka R
zostało to zrobione za pomocą biblioteki dplyr i instrukcji lag ().

Eksperymentalne wykorzystanie technik RNN i XGBo-
ost do predykcji temperatury na dowolnej głębokości kon-
strukcji nawierzchni. Przyjęto dwa eksperymentalne mode-
le: E_XGBoost oraz E_MODEL1 polegające na prognozie
temperatury w chwili t = 0 wraz ze zmienną głębokość wpro-
wadzoną jawnie (tabela 5).

The results in Table 4 indicate very good effectiveness of the
RNN technique for predicting temperature changes in which the
data show dependence on temporal trends. The only advantage
of using the bidirectional network MODEL3 was a significant
reduction of training time in terms of the number of epochs
needed to obtain the final form of the model, compared with
MODEL1 and MODEL2. The maximum MAPE error was less
than 13.87%. Analysis of the results allowed concluding that
the effectiveness of the bidirectional RNN technique in
MODEL3 turned out to be the same as in MODEL2. It enabled
identifying both diurnal and seasonal temperature fluctuations.
The prediction was obtained on the basis of measurements of
temperature and humidity from the previous 3 h.

Gradient-boosted decision-tree models XGBoost
constitute the second category of applied algorithms. The main
idea is to create a sequence of simple trees, each successive one
being constructed to predict the residuals generated by the
preceding tree [12]. It can be demonstrated that such a
procedure of “additive weighted expansion” of trees ultimately
allows an excellent fit of predicted values to observed values,
even when the nature of the relationship between predictors
and the dependent variable is highly complex (e.g., nonlinear).
The main advantage of this technique is its reduced sensitivity
to missing data and the ability to perform optional data scaling.
In the case of a large dataset, omitting this step is convenient,
which results from the fact that at any time the results of the
output variable (tensor y) can be fully interpreted.
Nevertheless, this technique predicts the value of tensor y with
respect to the predictors found in the same record. Therefore,
the time-sequence structure, as in RNN networks, has no
application here. Constructing such a boosted-tree model
required additional operations related to data transformation.
This consisted of applying additional variables in the form of
delays, i.e., lags. Constructing lags consists of creating new
features that represent the value of a given variable from
previous time steps. In the R script this was done using the
dplyr library and the lag() instruction.

Experimental use of RNN and XGBoost techniques for
predicting temperature at any depth of the pavement
structure. Two experimental models were adopted:
E_XGBoost and E_MODEL1, consisting of predicting
temperature at the moment t = 0 together with an explicitly
introduced variable depth (Table 5).

Table 4. Model fit metrics (test set): MODEL1, MODEL2 and MODEL3
Tabela 4. Metryki dopasowania modeli (zbiór testowy): MODEL1, MODEL2 i MODEL3

Location/
Lokalizacja

MODEL1 MODEL2 MODEL3

RMSE [°C] MAE [°C] MAPE [%] R2 RMSE [°C] MAE [°C] MAPE [%] R2 RMSE [°C] MAE [°C] MAPE [%] R2

P4_2 cm 3,63 2,19 11,72 0,88 2,71 1,94 10,56 0,87 3,3 1,69 12,4 0,9

P4_6 cm 3,16 2,1 11,77 0,88 2,41 1,94 10,24 0,91 2,73 1,78 11,71 0,91

P4_10 cm 3,06 2,08 12,48 0,87 2,01 1,95 12,29 0,94 2,74 1,82 15,1 0,9

P4_16 cm 3,12 2,05 11,63 0,84 2,28 1,84 9,76 0,92 2,48 1,63 10,9 0,9

P4_22 cm 3,14 2,23 13,87 0,83 3,38 2,0 11,60 0,89 3,28 1,76 13,34 0,81

RMSE – Root Mean Square Error/błąd średniokwadratowy; MAE – Mean Absolute Error/średni błąd bezwzględny; MAPE – Mean Absolute Percentage Error/średni
procentowy błąd bezwzględny; R2 – Coefficient of Determination/współczynnik determinacji
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Wariant E_XGBoost zaprojektowano z myślą o popra-
wie dokładności i umożliwieniu interpolacji temperatury
pomiędzy czujnikami. Kluczowe modyfikacje obejmowały
(tabela 5):

● wprowadzenie predyktora „głębokość”: do zbioru cech
dodano informację o głębokości, dzięki czemu model mógł
uczyć się zależności między głębokością a temperaturą;

● kontynuację kodowania czasu: zachowano zmienne
hour_sin i hour_cos;

● rozbudowanie przestrzeni parametrów: dzięki zwiększe-
niu max_depth do 100 i zmniejszeniu nrounds do 368, model
mógł budować bardziej złożone drzewa, minimalizując ryzy-
ko przeuczenia.

Trening przebiegał analogicznie jak w modelu klasycz-
nym, ale wymagał nieco więcej czasu ze względu na więk-
szą złożoność drzew zgodnie z parametrami procesu ucze-
nia (tabela 6). Rezultaty przerosły oczekiwania początko-
we, a mianowicie: RMSE wyniosło 0,97°C, R² = 0,988,
MAE = 0,67°C, a MAPE = 4,51%, co oznacza, że model nie-
mal idealnie odwzorowywał rozkład temperatury. Uzyskane
wyniki wskazały, że model bardzo dobrze prognozował war-
tości temperatury w wariancie, gdzie zmienna głębokość zo-
stała potraktowana jako predyktor. Rezultaty dopasowania
wyników eksperymentalnych do oszacowanych za pomocą
modelu, z podziałem na głębokość, przedstawiono na rysun-
ku 2. Potwierdziły one bardzo dobre odwzorowanie zmiany
temperatury w przekroju nawierzchni w przypadku h > 0 cm.
Model E_XGBoost doskonale odzwierciedlił zarówno waha-
nia dobowe, jak również dryf jej zmiany związany z cyklem
dobowym. Należy zwrócić uwagę, że jedną z zalet tej techni-
ki jest możliwość szybkiej aktualizacji wag modelu za pomo-
cą nowego zbioru (wsadu), co powoduje, że jest bardziej uni-
wersalny i wykazuje większą zdolność do uogólnienia zjawi-
ska zmiany temperatury w nawierzchni.

Rozszerzony model RNN
z predyktorem głębokości
i opadu – E_MODEL1.
Zastosowanie modelu
E_XGBoost (tabela 5) wska-
zało, że uwzględnienie głę-
bokości jako zmiennej loso-
wej, oprócz poprawy jakości
predykcji rozkładu tempera-
tury pozwoliło również na
jej interpolację w przekroju
nawierzchni w miejscach,
w których czujniki nie zo-

The E_XGBoost variant was designed with the aim of
improving prediction accuracy and enabling temperature
interpolation between sensors. The key modifications included
(Table 5):

● introduction of the predictor “depth”: information about
depth was added to the feature set, allowing the model to learn
the relationship between depth and temperature;

● continuation of time encoding: the variables hour_sin and
hour_cos were retained;

● expansion of the parameter space: by increasing
max_depth to 100 and reducing nrounds to 368, the model
could build more complex trees while minimising the risk of
overfitting.

Training proceeded analogously to the classical model but
required slightly more time due to the higher complexity of
the trees in accordance with the learning-process parame-
ters (Table 6). The results exceeded the initial expecta-
tions, namely: RMSE amounted to 0.97°C, R2 = 0.988,
MAE = 0.67°C, and MAPE = 4.51%, which means that the
model reproduced the temperature distribution almost ideally.
The results indicated that the model predicted temperature
values very well in the variant where the variable depth was
treated as a predictor. The fit results of the experimental
values to those estimated by the model, broken down by
depth, are presented in Figure 2. They confirmed very good
reproduction of temperature changes within the pavement
profile in the case of h > 0 cm. The E_XGBoost model
accurately reproduced both diurnal fluctuations and the drift
of its variation associated with the daily cycle. It is worth
noting that one of the advantages of this technique is the
possibility of rapid updating of model weights using a new
dataset (batch), which makes it more universal and provides
greater ability to generalise the phenomenon of temperature
variation in the pavement.

Extended RNN model
with depth and rainfall
predictor – E_MODEL1.
The use of the E_XGBoost
model (Table 5) showed
that incorporating depth as
a random variable, apart
from improving the accu-
racy of predicting the tem-
perature distribution, also
enabled its interpola-
tion within the pavement
profile in places where sen-

Table 5. Characteristics of the adopted experimental models
Tabela 5. Charakterystyka przyjętych modeli eksperymentalnych

Model Input data (predictors)/Dane wejściowe
(predyktory)

Sequence length (time window)/
Długość sekwencji (okno czasowe)

Output data (predicted variable)/Dane
wyjściowe (zmienna prognozowana)

E_XGBoost temp_0cm humidity, hour_sin, hour_cos,
depth (cm)

6 steps (3 h) encoded into tabular features as
lags/6 kroków (3 h) zakodowane w cechy
tablicowe w postaci „lagów”

temperature at any depth h (0–22 cm) at time t/
temperatura na dowolnej głębokości h (0 ÷ 22 cm)
w chwili t

E_MODEL1
(RNN + depth + rain)

temp_0cm humidity, hour_sin, hour_cos,
depth (cm) 6 steps /6 kroków × 30 min (3 h)

temperature at any depth h (0–22 cm) at time t/
temperatura na dowolnej głębokości h (0 ÷ 22 cm)
w chwili t

Table 6. Learning parameters of the modified E_XGBoost model
Tabela 6. Parametry procesu uczenia zmodyfikowanego modelu E_XGBoost

nrounds max_depth eta gamma colsample_bytree min_child_weight subample

368 100 0,05 0 0,8 1 0,8

eta (learning rate) – learning rate/współczynnik uczenia; gamma – minimum loss reduction
required to make a tree split/minimalna wymagana redukcja funkcji straty przy podziale wę-
zła drzewa; max_depth – maximum depth of a single tree; maksymalna głębokość pojedyn-
czego drzewa; min_child_weight – minimum sum of instance weights needed in a tree leaf/
minimalna suma wag instancji w liściu drzewa; colsample_bytree – fraction of features ran-
domly sampled for each tree/frakcja cech losowo wybieranych przy budowie każdego drze-
wa; subsample – fraction of training samples used to build each tree/frakcja próbek trenin-
gowych używana do budowy drzewa; nrounds – number of boosting iterations (trees)/licz-
ba iteracji boostingowych (drzew); lambda – L2 regularization term on weights (reduces mo-
del variance)/współczynnik regularyzacji L2 na wagach (redukuje wariancję modelu)
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stały zlokalizowane.
Ze względu na tabli-
cową strukturę model
nie jest w stanie jaw-
nie przetworzyć struk-
tury sekwencji, czyli
nie potrafi rozróżnić,
czykolejnedanewcza-
sie są losowe, czy też
zależą od cech wej-
ściowych. W związ-
ku z tym podjęto ko-
lejną próbę budowy
eksperymentalnego
modelu bazującego
tym razem na modelu
RNN, o architekturze
warstw jak w MO-
DEL1 i oznaczono go
jako E_MODEL1.
W modelu tym
uwzględniono imple-
mentację dodatkowe-
go kanału w postaci

opadów deszczu oraz głębokość. Obie zmienne wymagały
normalizacji. Przygotowanie modelu obejmowało:

■ wprowadzenie predyktora „głębokość” – oprócz sekwen-
cji temperatury powierzchni i wilgotności, do sieci wprowa-
dzono wejście reprezentujące głębokość; wartość ta była prze-
twarzana przez niewielką warstwę gęstą (16 neuronów);

■ dodanie zmiennej „opad” – analiza heatmapy wilgotno-
ści i temperatury powierzchni (rysunek 3) wykazała, że lip-

cowy spadek tempera-
tury był wynikiem in-
tensywnych opadów;
ujęcie opadów jako
predyktora pozwoliło
na lepsze odwzorowa-
nie tego zjawiska;

■ integrację dwóch
strumieni informacji
– po przejściu sek-
wencji przez warstwę
LSTM (256 neuro-
nów) i batchnormali-
zation oraz przetwo-
rzeniu głębokości oba
strumienie łączono za
pomocą concatenate
(), a następnie przeka-
zywano do kolejnych
warstw gęstych (128
i 1 neuron).

Łącznie model za-
wierał 304 417 pa-
rametrów, z czego
303 905 ulegało aktu-

sors were not loca-
ted. Due to the tabu-
lar structure, the mo-
del is not able to
explicitly process se-
quence structure,
i.e., it cannot distin-
guish whether suc-
cessive data in time
are random or de-
pendent on input fe-
atures. Therefore,
a further attempt was
made to construct an
experimental model
based this time on
the RNN model with
the architecture of
layers as in MODE-
L1, designated as
E_MODEL1. In this
model, implementa-
tion of an additional
channel in the form
of rainfall and depth was included. Both variables required nor-
malisation. Model preparation included:

■ introduction of the predictor “depth” – apart from the
sequence of surface temperature and humidity, an input
representing depth was introduced to the network; this value
was processed by a small dense layer (16 neurons);

■ adding the variable „rainfall” – analysis of the heat maps
of humidity and surface temperature (Figure 3) showed that the
July decline in tempe-
rature was the result
of intense rainfall; in-
cluding rainfall as
a predictor allowed
better reproduction of
this phenomenon;

■ integration of
two information stre-
ams – after proces-
sing the sequence
through the LSTM
layer (256 neurons)
and batch normalisa-
tion and processing
depth, both streams
were concatenated
and then passed to
subsequent dense lay-
ers (128 and 1 neu-
ron).

In total, the model
contained 304 417
parameters, of which
303 905 were train-

Fig. 3. Heatmap of environmental variables: humidity (a) and surface temperatu-
re (b)
Rys. 3. Heatmapa zmiennych środowiskowych: wilgotności (a) oraz temperatury na
powierzchni (b)
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Fig. 2. Comparison of the predicted temperature at different depth with the temperature
read from the monitoring system for the E_XGBoost model
Rys. 2. Porównanie prognozowanej temperatury na poszczególnych głębokościach względem
temperatury odczytanej z systemu monitoringu dla modelu E_XGBoost

blue line – measured, red points – predicted/
niebieska linia – temperatura zmierzona;
czerwone punkty – temperatura przewidywana
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alizacji. Trening przeprowadzono z wczesnym zatrzymaniem,
tak jak w MODEL1.

Jakość dopasowania w postaci wybranych metryk modelu
E_MODEL1, po uwzględnieniu opadów deszczu wyniosła śred-
nio: RMSE = 3,16°C, MAE = 2,18°C, MAPE = 14,5%
R² = 0,855. Metryki dopasowania nie wskazywały zatem
na poprawę skuteczności w porównaniu do MODEL1, ale
uwzględnienie dodatkowego czynnika w postaci opadów desz-
czu oraz głębokości wyeliminowało zaobserwowaną anoma-
lię w okresie lipca i umożliwiło predykcję temperatury pomię-
dzy czujnikami. Ponadto, obserwując wyniki dopasowania
(rysunek 4), można przypuszczać, że uzyskane dopasowanie
stanowi uśrednienie wyników zmiany temperatury względem
wszystkich głębokości z niewielką korektą wynikającą z przy-
jęcia zmiennej w postaci znormalizowanej głębokości ucze-
nia sieci RNN. Należy również nadmienić, że trend zmiany
temperatury ujęty przez model sieci RNN został odwzorowa-
ny satysfakcjonująco dobrze. Największe, pojedyncze anoma-
lie prognozy temperatury pojawiają się w okresie, kiedy da-
ne były niewłaściwie przetwarzane przez czujnik

Podsumowując, aby poprawnie dokonać interpolacji tempe-
ratury na wysokim poziomie precyzji, należy w przyszłości za-
stosować sieć hybrydową składającą się z sieci RNN i XGBo-
ost. W ten sposób powstanie architektura modelu, w którym
dane czasowe są najpierw przetwarzane przez sieć rekurencyj-
ną (RNN, np. LSTM), a wyniki (np. reprezentacje sekwencji)
przekazywane jako cechy do modelu XGBoost. W efekcie sieć
RNN będzie przetwarzać kolejne sekwencje (np. 24 godziny
wilgotności, temp.), generując macierz reprezentacji (embed-
ding). Następnie technika XGBoost, wykorzystując macierz re-
prezentacji, będzie trenowana na cechach statycznych, takich
jak: głębokość nawierzchni czy pora dnia. W efekcie sieć RNN

able. Training was carried out with early stopping, just as in
MODEL1.

The quality of fit in the form of selected metrics of the
E_MODEL1 model, after including rainfall, amounted on
average to: RMSE = 3.16°C, MAE = 2.18°C, MAPE = 14.5%,
R2 = 0.855. The fit metrics therefore did not indicate an
improvement in effectiveness compared with MODEL1, but
the inclusion of an additional factor in the form of rainfall and
depth eliminated the observed anomaly in the July period and
made it possible to predict the temperature between the
sensors. Moreover, when observing the fit results (Figure 4),
it can be assumed that the obtained fit constitutes an averaging
of the results of temperature variation with respect to all
depths, with slight correction resulting from the adoption of
the normalised depth variable for training the RNN model. It
should also be noted that the trend of temperature variation
captured by the RNN model was reproduced satisfactorily
well. The largest individual anomalies of temperature
prediction appear in the period when the data were incorrectly
processed by the sensor.

In summary, in order to correctly perform temperature
interpolation at a high level of precision, it is necessary in the
future to apply a hybrid network consisting of an RNN and
XGBoost. In this way, a model architecture will be created in
which time-series data are first processed by a recurrent
network (RNN, e.g., LSTM), and the results (e.g., sequence
representations) are passed as features to an XGBoost model.
As a result, the RNN network will process successive
sequences (e.g., 24 hours of humidity, temperature), generating
a representation matrix (embedding). Next, the XGBoost
technique, using the representation matrix, will be trained on
static features such as pavement depth or time of day.

Fig. 4. Comparison of temperature prediction results generated by the E_MODEL1 model with experimental results
Rys. 4. Porównanie wyników predykcji temperatury wygenerowanej przez model typu E_MODEL1 z wynikami eksperymentalnymi
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pozwoli na wyłapanie wzorców czasowych istniejących
w zbiorze, a model XGBoost zapewni dużą skuteczność i kon-
trolę cech statycznych.

Dyskusja skuteczności przyjętych modeli
Przeprowadzone badania potwierdziły, że metody typu da-

ta-driven pozwalają wiarygodnie prognozować rozkład tem-
peratury w profilu nawierzchni asfaltowej w przypadku h > 0.
W grupie modeli sekwencyjnych architektura dwukierunko-
wa MODEL3 (BiLSTM) okazała się wariantem referencyj-
nym: na zbiorze testowym wiernie odwzorowała cykl dobo-
wy i trend sezonowy, osiągając uśrednione RMSE = 2,91°C
i R² = 0,88, z najlepszym dopasowaniem w warstwach pośred-
nich (od 6 do 16 cm). Maksymalny błąd estymacji wyniósł
3,28°C, co potwierdza przydatność MODEL3 w zastosowaniu
wymagającym dużej wierności czasowej. Wstępne warianty ba-
zowe (MODEL1 i MODEL2) uzasadniły wybór podejścia se-
kwencyjnego, jednak z punktu widzenia kompromisu między
złożonością a jakością to MODEL3 zapewniał najbardziej
stabilne wyniki.

Model tablicowy typu XGBoost stanowił szybką i interpre-
towalną alternatywę. Kluczowe znaczenie miało wprowadze-
nie informacji o głębokości: wariant eksperymentalny
E_XGBoost umożliwił ciągłą interpolację na głębokości
h > 0 cm z bardzo małym błędem RMSE ≈ 0,97°C, R² ≈ 0,988
(tabela 7), odtwarzając realistyczną modulację amplitudy wraz
z głębokością. Taki profil temperaturowy jest szczególnie cen-
ny w procedurach normalizacji ugięć FWD/TSD, gdy brak jest
bezpośredniego pomiaru temperatury w warstwie konstrukcji
nawierzchni na wymaganej głębokości.

Z kolei E_MODEL1 (RNN rozszerzony o głębokość
i opad) poprawił odporność na epizody pogodowe oraz
umożliwił interpolację między czujnikami, nie przynosząc
jednak wyraźnego wzrostu podstawowych metryk względem
bazowego MODEL1 (RMSE = 3,16°C, R² = 0,86). Wynik
ten sugeruje (tabela 7), że eksplicytne uwarunkowanie po
głębokości w modelu drzewiastym jest bardziej efektywne
w przypadku rekonstrukcji profilu niż analogiczne rozsze-
rzenie w RNN przy krótkim oknie sekwencji.

Z praktycznego punktu widzenia rekomenduje się dobór
modelu MODEL3 w zadaniach wymagających możliwie naj-
wyższej wierności czasowej (np. śledzenie zmian dobowych
i sezonowych), oraz E_XGBoost wszędzie tam, gdzie liczą się
szybkość, prostota integracji i wiarygodna interpolacja pro-
filu od 0 cm do 22 cm na potrzeby korekcji temperaturowej.
Naturalnym kierunkiem dalszych prac jest model hybry-
dowy RNN→XGBoost, w którym reprezentacje sekwencji
(embeddingi) wytwarzane przez sieć BiLSTM zasilają model
boostingowy przetwarzający cechy statyczne (głębokość, po-

Consequently, the RNN network will make it possible to
capture temporal patterns present in the dataset, and the
XGBoost model will provide high effectiveness and control of
static features.

Discussion of the effectiveness
of the adopted models

The conducted studies confirmed that data-driven methods
enable reliable prediction of the temperature distribution within
the asphalt pavement profile in the case of h > 0. In the group
of sequence models, the bidirectional architecture MODEL3
(BiLSTM) proved to be the reference variant: on the test
dataset it faithfully reproduced the diurnal cycle and the
seasonal trend, achieving average RMSE = 2.91°C and
R2 = 0.88, with the best fit occurring in the intermediate layers
(from 6 to 16 cm). The maximum estimation error was 3.28°C,
which confirms the usefulness of MODEL3 in an application
requiring high temporal fidelity. The initial baseline variants
(MODEL1 and MODEL2) justified the choice of the
sequential approach, although in terms of compromise between
complexity and quality, MODEL3 provided the most stable
results.

The table-based XGBoost model constituted a fast and
interpretable alternative. The introduction of the depth variable
was of key significance: the experimental variant E_XGBoost
enabled continuous interpolation at depths h > 0 cm with a very
small error RMSE ≈ 0.97°C, R2 ≈ 0.988 (Table 7), reproducing
the realistic modulation of amplitude with depth. Such a tem-
perature profile is particularly valuable in FWD/TSD norma-
lisation procedures when no direct temperature measurement
is available in the pavement layer at the required depth.

In turn, E_MODEL1 (RNN extended with depth and
rainfall) improved resistance to weather episodes and enabled
interpolation between sensors, but did not produce a clear
increase in basic metrics compared with the baseline MODEL1
(RMSE = 3.16°C, R2 = 0.86). This result suggests (Table 7) that
explicit conditioning on depth in the tree-based model is more
effective for profile reconstruction than an analogous extension
in the RNN when the sequence window is short.

From a practical viewpoint, it is recommended to choose
MODEL3 for tasks requiring the highest possible temporal
fidelity (e.g., tracking diurnal and seasonal variations), and
E_XGBoost wherever speed, ease of integration and reliable
interpolation of the profile from 0 to 22 cm are important for
temperature correction. A natural direction for further work
is a hybrid model RNN→XGBoost, in which sequence
representations (embeddings) generated by the BiLSTM
network feed a boosting model processing static features
(depth, time of day). At the same time, cross-location

Table 7. Summary of average fit metrics (relative to specified depths) obtained for the tested models
Tabela 7. Podsumowanie średnich wartości metryk dopasowania (względem zadanych głębokości) uzyskane w przypadku testowanych modeli

MODEL 3 E_XGBoost E_MODEL1

RMSE [°C] MAE [°C] MAPE [%] R2 RMSE [°C] MAE [°C] MAPE [%] R2 RMSE [°C] MAE [°C] MAPE [%] R2

2,91 1,74 12,69 0,88 0,97 0,67 4,51 0,99 3,16 2,18 14,5 0,86
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ra doby). Jednocześnie wskazana jest walidacja międzyloka-
lizacyjna (odmienne klimaty i konstrukcje) oraz analiza stabil-
ności metryk w dłuższych horyzontach czasowych, co przesądzi
o docelowej skalowalności rozwiązania w praktyce sieciowej.

Zestawienie wyników wskazuje na wyraźne różnice mię-
dzy klasami modeli:

● dokładność – w prognozie na danych punktach (od 2
do 22 cm) najlepszy okazał się MODEL3, lecz E_XGBoost
osiągnął jeszcze lepsze wyniki dzięki wprowadzeniu zmien-
nej głębokości i kodowaniu czasu;

● trening i implementacja – E_XGBoost trenuje się znacz-
nie szybciej, wymaga jedynie przygotowania tablicy z laga-
mi i kodowaniem czasu. RNN potrzebują sekwencyjnej struk-
tury danych, mają duże wymagania obliczeniowe i są bardziej
wrażliwe na braki w szeregach czasowych;

● interpretowalność – E_XGBoost pozwala na ocenę waż-
ności poszczególnych zmiennych, natomiast RNN są mniej
transparentne. Współczynniki ważności mogą pomóc w iden-
tyfikacji kluczowych czynników meteorologicznych i techno-
logicznych;

● interpolacja – E_XGBoost radzi sobie znakomicie z in-
terpolacją temperatury pomiędzy czujnikami. Wykorzystanie
sieci RNN w wariancie E_MODEL1 umożliwia interpolację,
lecz przy większym błędzie aproksymacji.

Wnioski
Analiza wykazała, że modele rekurencyjne i gradientowe wy-

kazują różne mocne strony: RNN lepiej odwzorowują złożoną
dynamikę czasową, zaś XGBoost zapewnia szybkość, interpre-
towalność i łatwość implementacji. W artykule zaproponowano
koncepcję modelu hybrydowego łączącego obie techniki – RNN
generowałby reprezentacje sekwencji (tzw. embeddingi),
a XGBoost wykorzystywał je jako cechy wejściowe. Taki mo-
del mógłby korzystać z możliwości RNN w wychwytywaniu
wzorców temporalnych oraz z efektywności XGBoost w prze-
twarzaniu cech statycznych, takich jak głębokość czy pora dnia.
Ponadto model hybrydowy z powodzeniem mógłby uwzględniać
predyktory meteorologiczne i inżynierskie (np. skład mieszanki,
grubość warstw) jako dodatkowe wejścia, co zwiększyłoby uni-
wersalność i adaptowalność do różnych lokalizacji. Rozwinięcie
tej koncepcji stanowi naturalny kierunek dalszych prac.

Wyniki wskazują, że MODEL3 – dwukierunkowa sieć
LSTM – osiągnął najlepsze wyniki wśród modeli sekwencyj-
nych. Z kolei E_MODEL1 wykazał, że dodanie predyktora
w postaci głębokości i opadów pozwala na ograniczenie wpły-
wu anomalii temperaturowych oraz umożliwia interpolację
temperatury względem głębokości. Obliczony RMSE wskazu-
je, że w przypadku głębokości 22 i 16 cm model jest staty-
stycznie nieobciążony (ME ≈ 0), natomiast bliżej powierzch-
ni występują pozytywne prognozy wynikające z większej
niestacjonarności cieplnej. W tej sytuacji konieczne jest
uwzględnienie czynników związanych z przewodnością
cieplną poszczególnych warstw.

Bardzo dobre rezultaty wykazał eksperymentalny model
E_XGBoost, który został zbudowany do prognozy i interpo-
lacji temperatury na głębokości do 22 cm. Dzięki zastosowa-

validation (different climates and structural configurations)
and analysis of metric stability over longer time horizons are
recommended, which will determine the target scalability of the
solution in network-level practice.

The juxtaposition of results indicates clear differences
between model classes:

● accuracy – in prediction at given points (2 to 22 cm)
MODEL3 turned out to be the best, but E_XGBoost achieved
even better results due to the introduction of the depth variable
and time encoding;

● training and implementation – E_XGBoost trains much
faster, requiring only preparation of a table with lags and time
encoding. RNNs require sequential data structure, have higher
computational demands and are more sensitive to gaps in time
series;

● interpretability – E_XGBoost allows assessing the
importance of individual variables, whereas RNNs are less
transparent. Importance coefficients can help identify key
meteorological and technological factors;

● interpolation – E_XGBoost performs excellently in
interpolating temperature between sensors. Use of RNNs in the
E_MODEL1 variant enables interpolation, but with a larger
approximation error.

Conclusions
The analysis showed that recurrent and gradient-boosted

models exhibit different strengths: RNNs better reproduce
complex temporal dynamics, whereas XGBoost provides
speed, interpretability and ease of implementation. The article
proposes the concept of a hybrid model combining both
techniques – an RNN would generate sequence representations
(so-called embeddings), and XGBoost would use them as input
features. Such a model could take advantage of the ability of
RNNs to capture temporal patterns and of the effectiveness of
XGBoost in processing static features, such as depth or time
of day. In addition, a hybrid model could successfully
incorporate meteorological and engineering predictors (e.g.,
mix composition, layer thickness) as additional inputs, which
would increase its universality and adaptability to different
locations. Developing this concept constitutes a natural
direction for further work.

The results indicate that MODEL3 – the bidirectional LSTM
network – achieved the best results among sequence models.
In turn, E_MODEL1 showed that adding predictors in the form
of depth and rainfall makes it possible to reduce the influence
of temperature anomalies and enables interpolation of
temperature with respect to depth. The calculated RMSE
indicates that for depths of 22 and 16 cm the model is
statistically unbiased (ME ≈ 0), whereas closer to the
surface positive prediction errors appear due to greater
thermal non-stationarity. In this situation it is necessary to
take into account factors related to the thermal
conductivity of individual layers.

Very good results were demonstrated by the experimental
model E_XGBoost, which was built for prediction and
interpolation of temperature at depths up to 22 cm. Thanks to
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niu zmiennej czasowej oraz 3 h interwału pomiaru wilgotno-
ści i temperatury powierzchni uzyskano model zdolny do pro-
gnozowania temperatury w przekroju nawierzchni w całym
zakresie dziedziny eksperymentu.

Rekomendacje do stosowania w praktyce inżynierskiej:
■ wybór modelu – tam, gdzie najważniejsza jest dokład-

ność prognozy i dostępna jest odpowiednia infrastruktura ob-
liczeniowa, rekomenduje się użycie MODEL3. Zapewnia on
dużą precyzję i jest w stanie odwzorować zarówno dobowe,
jak i sezonowe wahania temperatury. W projektach wymaga-
jących szybkiej aktualizacji lub pracy na urządzeniach o ogra-
niczonej mocy obliczeniowej lepszym wyborem będzie
E_XGBoost – model szybko się uczy i oferuje najwyższą do-
kładność interpolacji;

■ w zastosowaniach utrzymaniowych modele data-driven
mogą wspierać normalizację ugięć FWD/TSD w czasie rze-
czywistym na podstawie dostępnego pomiaru temperatury
powierzchni. Zastosowania zimowe wymagają osobnej wali-
dacji na zbiorach obejmujących porę mroźną.

Kierunki dalszych badań:
● rozwój hybrydowego modelu RNN–XGBoost – celem

dalszych badań powinno być zaprojektowanie i przetestowa-
nie modelu, który połączy sekwencyjne przetwarzanie RNN
z funkcją decyzyjną XGBoost, taka hybryda mogłaby popra-
wić dokładność prognozy, a jednocześnie zachować interpre-
towalność i szybkość działania;

● walidacja na innych odcinkach i w różnych warunkach
klimatycznych – większość dotychczasowych badań była pro-
wadzona na jednym stanowisku pomiarowym, należy zebrać
dane z innych regionów o odmiennych warunkach klimatycz-
nych (np. tereny górskie, nadmorskie) i sprawdzić, jak mode-
le skalują się w nowej lokalizacji; konieczne może być ponow-
ne strojenie parametrów lub zastosowanie transfer learningu;

● fizyczne wykorzystanie informowanych sieci neurono-
wych (PINN) – połączenie równań przewodnictwa cieplnego
z uczeniem maszynowym może jeszcze lepiej odwzorować
procesy fizyczne i umożliwić jednoczesne szacowanie właści-
wości materiałowych. Przeprowadzenie badań nad PINN
w kontekście nawierzchni drogowych może otworzyć nowe
perspektywy.

Analiza metryk jakości dopasowania potwierdza, że obcią-
żenie prognoz zwiększa się bliżej powierzchni, co ma uzasad-
nienie fizyczne – w płytszych warstwach występuje większa
amplituda radiacyjna i krótsze opóźnienie cieplne, a model
uczony na sekwencjach 3 h nie uwzględnia w pełni tego efek-
tu. Dalsze badania planuje się z wydłużonym oknem sekwen-
cji i uwzględnieniem nasłonecznienia jako predyktora. Ponad-
to zbiór danych nie obejmuje okresu zimowego. Obserwując
obiecujące rezultaty, model E_XGBoost zostanie w najbliższej
przyszłości wsparty dodatkowymi zbiorami danych z tego okre-
su pory roku.

W artykule przeprowadzono analizy porównujące RNN
z gradientowym boostingiem (XGBoost), które wykazały, że
RNN lepiej uchwytują nieliniowe relacje i zależności czaso-
we, mimo że ich trening jest dłuższy i wymagają większego
zbioru danych. Z kolei XGBoost jest szybszy i łatwiejszy
w interpretacji, lecz do przetwarzania sekwencji wymaga do-

the use of the time variable and the 3-hour measurement
interval of humidity and surface temperature, a model capable
of predicting temperature in the pavement profile across the
entire domain of the experiment was obtained.

Recommendations for use in engineering practice:
■ model selection – where the highest forecast accuracy is

required and appropriate computational infrastructure is
available, MODEL3 is recommended. It provides high
precision and is able to reproduce both diurnal and seasonal
temperature fluctuations. In projects requiring rapid updating
or operation on devices with limited computing power,
E_XGBoost is a better choice – the model learns quickly and
offers the highest interpolation accuracy;

■ maintenance applications data-driven models can support
FWD/TSD deflection normalisation in real time based on
available surface temperature measurements. Winter
applications require separate validation on datasets covering
the freezing period.

Directions for further research:
● development of a hybrid RNN–XGBoost model – the aim

of further studies should be the design and testing of a model
that combines sequential RNN processing with the decision
function of XGBoost; such a hybrid could improve forecast
accuracy while maintaining interpretability and operational
speed;

● validation on other sections and in different climatic
conditions – most existing studies have been conducted at a
single measurement site; it is necessary to collect data from
regions with different climatic conditions (e.g., mountainous,
coastal areas) and verify how the models scale to new
locations; re-tuning of parameters or the use of transfer
learning may be required;

● physical use of physics-informed neural networks (PINN)
– combining heat-conduction equations with machine learning
may further improve the reproduction of physical processes
and allow simultaneous estimation of material properties.
Conducting PINN research in the context of road pavements
may open new perspectives.

Analysis of the fit-quality metrics confirms that prediction
bias increases closer to the surface, which has physical
justification – the shallower layers display greater radiative
amplitude and shorter thermal delay, and a model trained on
3-hour sequences does not fully account for this effect.
Further research is planned with an extended sequence
window and inclusion of solar radiation as a predictor.
Moreover, the dataset does not include the winter period.
Observing the promising results, the E_XGBoost model will
be supplemented in the near future with additional datasets
from that season of the year.

The article carried out analyses comparing RNN with
gradient boosting (XGBoost), which showed that RNNs better
capture nonlinear relationships and temporal dependencies,
although their training is longer and they require larger
datasets. In turn, XGBoost is faster and easier to interpret, but
for sequence processing it requires additional data in the form
of artificial delays. The presented conclusions and
recommendations indicate the significant potential of machine
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datkowych danych w postaci sztucznych opóźnień. Przedsta-
wione wnioski i rekomendacje świadczą o dużym potencjale
uczenia maszynowego w prognozowaniu temperatury w prze-
kroju warstw nawierzchni i jego znaczeniu dla diagnostyki
oraz utrzymania infrastruktury drogowej. Dalsze prace ba-
dawcze powinny koncentrować się na hybrydyzacji metod,
rozszerzeniu bazy danych i integracji modeli z systemami za-
rządzania ruchem i pogodą.

Artykuł wpłynął do redakcji: 20.0?.2025 r.
Otrzymano poprawiony po recenzjach: 10.10.2025 r.

Opublikowano: 23.12.2025 r.

learning in predicting temperature within the pavement layer
system and its importance for diagnostics and maintenance of
road infrastructure. Further research should focus on
hybridisation of methods, expansion of the data base and
integration of models with traffic and weather management
systems.
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