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Abstract. Reliable knowledge of the temperature distribution
within asphalt pavements is essential for maintenance and
structural diagnosis. To forcast the asphalt layers temperature the
recurrent neural networks (RNN, including LSTM and BiLSTM)
and gradient-boosted decision trees (XGBoost) have been used
based on a multi-month field dataset (March — October) with
multi-depth temperature measurements and meteorological
variables. RNNs captured both diurnal fluctuations and seasonal
trends with high predictive accuracy. While the classical
XGBoost setup was slightly less precise, it offered very short
training times and greater interpretability; its depth-generalized
experimental variant enabled interpolation across the full depth
range with an error of ~0,97°C (R*~ 0,988). The findings support
hybridization (RNN + XGBoost) to combine temporal-pattern
extraction with efficient regression on static features (e.g., depth,
time-of-day).

Keywords: asphalt pavement; temperature distribution; machine
learning; RNN; LSTM; BiLSTM; XGBoost; interpolation;
temperature correction; FWD; TSD.

evelopment of the road network and increasing

requirements regarding its reliability mean that

pavement structural diagnostics is gaining in

importance. One of the key factors influencing the
durability and safety of asphalt use is the temperature of asphalt
layers. High temperature causes a loss of mixture stiffness and
an increase in permanent deformations, whereas low
temperature promotes the formation of shrinkage and fatigue
cracks. Under winter conditions, surface temperature is the
main factor determining road icing, which has a direct impact
on traffic safety. Therefore, accurate knowledge of how
temperature changes over time and at different depths is
necessary for assessing the technical condition of the pavement
and for planning maintenance treatments.

In practice, pavement bearing capacity is assessed using
TSD (Traffic Speed Deflectometer) and FWD (Falling Weight
Deflectometer) deflectometers, which record pavement
deflection generated under a moving load. The magnitude of
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metodami data-driven

Streszczenie. Utrzymanie i diagnostyka nawierzchni asfalto-
wych wymagaja wiarygodnej informacji o rozktadzie tempera-
tury w czasie i w glab konstrukcji. Do prognozowania tempera-
tury warstw asfaltowych zastosowano rekurencyjne sieci neuro-
nowe (RNN, w tym LSTM i BILSTM) oraz gradientowe mode-
le drzew decyzyjnych (XGBoost) na podstawie wielomiesigcz-
nych danych terenowych (marzec — pazdziernik) obejmujacych
pomiary na wielu glgbokosciach oraz parametry meteorologicz-
ne. Modele RNN wiernie odwzorowaty zard6wno wahania dobo-
we, jak i sezonowe. XGBoost, cho¢ w wariancie klasycznym nie-
co mniej precyzyjny, zapewnit bardzo krotki czas obliczen
i wigksza interpretowalno$¢; jego wariant eksperymentalny
z uogoblnieniem po glebokosci umozliwit interpolacjg tempera-
tury w calym zakresie badanych gigbokosci z blgdem rzgdu
~0,97°C (R? = 0,988). Wyniki wskazuja na zasadnos¢ hybrydy-
zacji podej$¢ (RNN + XGBoost), faczacej identyfikacje wzorcow
czasowych z efektywna regresja po cechach statycznych (m.in.
glebokosé, pora doby).

Stowa kluczowe: nawierzchnia asfaltowa; rozktad temperatury;
uczenie maszynowe; RNN; LSTM; BiLSTM; XGBoost; inter-
polacja; korekcja temperaturowa; FWD; TSD.

0zw0j sieci drogowej i rosngce wymagania doty-

czace jej niezawodno$ci powoduja, ze diagnostyka

konstrukcji nawierzchni zyskuje na znaczeniu. Jed-

nym z kluczowych czynnikow wplywajacych
na trwato$¢ i bezpieczenstwo uzytkowania asfaltu jest tempe-
ratura warstw asfaltowych. Wysoka temperatura powoduje
utrat¢ sztywno$ci mieszanki i wzrost odksztalcen trwatych,
natomiast niska sprzyja powstawaniu pgknig¢ skurczowych
i zmegczeniowych. W warunkach zimowych temperatura po-
wierzchni jest gtownym czynnikiem decydujacym o oblodze-
niu drogi, co ma bezposredni wptyw na bezpieczenstwo ru-
chu. W zwiazku z tym doktadne poznanie, jak zmienia si¢ tem-
peratura w czasie i na roznej glebokosci, jest niezbgdne
do oceny stanu technicznego nawierzchni oraz planowania
zabiegbow utrzymaniowych.

W praktyce ocena no$nosci nawierzchni odbywa si¢ za po-
moca ugigciomierzy typu TSD (Traffic Speed Deflectometer)
i FWD (Falling Weight Deflectometer), ktore rejestruja ugie-
cie nawierzchni generowane pod wplywem przemieszczaja-
cego sig obciazenia. Wielko$¢ odksztatcenia zalezy nie tylko
od rodzaju konstrukcji, lecz takze od temperatury warstwy as-
faltowej. Brak korekty do temperatury odniesienia moze pro-
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deformation depends not only on the type of structure but also
on the temperature of the asphalt layer. A lack of correction
to the reference temperature may lead to errors in assessing
the condition of the road network at the network-level
indicator scale. Precise prediction of the pavement
temperature distribution thus makes it possible both to
correctly recalculate deflection and to better plan
maintenance treatments.

The physical models used so far to predict temperature were
based on heat conduction equations and required the
introduction of many input data, which limits their usefulness
in practice. Simple regression models relied on a linear
relationship between pavement surface temperature and air
temperature, wind speed or precipitation, but they did not take
into account the long thermal memory of the asphalt layer and
the nonlinearity of the occurring changes. In recent years,
there has been increasing interest in the use of data-mining
and machine-learning methods for modelling engineering
processes. Recurrent neural networks (RNN — Recurrent
Neural Network), especially their LSTM (Long Short-Term
Memory) and GRU (Gated Recurrent Unit) variants, are capable
of learning long-term dependencies and better reproducing the
dynamics of temperature changes than statistical models. At the
same time, regression decision-tree models such as RF (Random
Forest) are being developed, which combine interpretability
with the ability to model nonlinear relationships. In recent years,
hybrid models have also appeared, combining elements of
physics with machine learning.

This paper presents the application of recurrent neural
networks and a regression decision-tree model to predict the
temperature distribution in the cross-section of a road
pavement structure. The models were calibrated on the basis
of data from field temperature measurements carried out at a
specially prepared test site. Over the course of a year, pavement
temperature was recorded at various depths together with other
meteorological data. The aim of the analysis was to compare
the accuracy of both approaches and to assess their usefulness
in the diagnostics of the road network, in particular in the
context of deflection correction.

Review of methods

Prediction of temperature in asphalt pavement structures
has traditionally been based on physical models of heat
conduction and energy balance, which, under appropriately
defined boundary conditions, ensure accuracy of description
[1 —4]. In practice, however, their usefulness is limited by input
parameters (including albedo, heat-absorption coefficients)
and sensitivity to meteorological variability, which hinders
calibration and operational application. Widely used empirical
formulas (e.g., BELLS) remain simple but provide moderate
accuracy and require further optimisation [5 — 6].

The increasing availability of field data favours a data-
driven approach. Preliminary attempts based on multiple
regression did not capture the thermal inertia and nonlinearity
of the process [6 — 9]. Recurrent neural networks (RNN),
especially LSTM and their bidirectional variants (BiLSTM),
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wadzi¢ do btedow w ocenie stanu sieci drogowej na pozio-
mie wskaznikowym. Precyzyjna prognoza rozktadu tempera-
tury nawierzchni umozliwia zatem zar6wno prawidtowe prze-
liczenie ugigcia, jak i lepsze planowanie zabiegdw utrzyma-
niowych.

Dotychczas stosowane modele fizyczne przewidujace tem-
perature bazowaly na rownaniach przewodnictwa cieplnego
1 wymagaty wprowadzenia wielu danych wejsciowych, co
ogranicza ich uzyteczno$¢ w praktyce. Proste modele regre-
syjne korzystaly z linearnej zalezno$ci migdzy temperatura
nawierzchni a temperatura powietrza, predkoscia wiatru czy
opadami, ale nie uwzgledniaty dtugiej pamigci cieplnej war-
stwy asfaltowej i1 nieliniowo$ci zachodzacych zmian.
W ostatnich latach zwigksza si¢ zainteresowanie wyko-
rzystaniem metod data-mining i uczenia maszynowego
do modelowania proceséw inzynierskich. Rekurencyjne
sieci neuronowe (RNN — Recurrent Neural Network), zwtasz-
cza ich odmiany LSTM (Long Short-Term Memory) i GRU
(Gated Recurrent Unit), potrafia uczy¢ si¢ dlugoterminowych
zalezno$ci 1 lepiej odwzorowaé dynamike zmian temperatu-
ry niz modele statystyczne. Jednocze$nie rozwijane sa regre-
syjne modele drzew decyzyjnych, takie jak RF (Random Fo-
rest), ktore tacza interpretowalno$¢ z mozliwoscia modelowa-
nia nieliniowych zalezno$ci. W ostatnich latach pojawity si¢
rowniez modele hybrydowe, taczace elementy fizyki z ucze-
niem maszynowym.

W artykule przedstawiono zastosowanie rekurencyjnych
sieci neuronowych oraz regresyjnego modelu drzew decyzyj-
nych do prognozowania rozktadu temperatury w przekroju
konstrukcji nawierzchni drogowej. Modele kalibrowano
na podstawie danych z terenowych pomiaréw temperatury
wykonywanych na specjalnie przygotowanym stanowisku ba-
dawczym. W ciagu roku rejestrowano temperaturg nawierzch-
ni na réznej gigbokosci oraz inne dane meteorologiczne. Ce-
lem analizy byto poréwnanie doktadno$ci obu podejsc i oce-
na ich przydatnosci w diagnostyce sieci drogowej, zwlaszcza
w konteks$cie korekty ugigcia.

Przeglad metod

Prognozowanie temperatury w konstrukcjach asfaltowych
tradycyjnie bazuje na modelach fizycznych przewodnictwa
cieplnego i bilansu energii, ktore przy odpowiednio zdefinio-
wanych warunkach brzegowych zapewniaja wiernos¢ opisu
[1—4]. W praktyce ich uzytecznos¢ ograniczaja jednak para-
metry wejsciowe (m.in. albedo, wspodtczynniki przejmowania
ciepta) i wrazliwos$¢ na zmiennos$¢ meteorologiczna, co utrud-
nia kalibracj¢ i zastosowania operacyjne. Powszechnie
stosowane formuly empiryczne (np. BELLS) pozostaja pro-
ste, lecz daja umiarkowana doktadnos¢ i wymagaja dalszej
optymalizacji [5 — 6].

Zwigkszajaca si¢ dostgpnos¢ danych terenowych sprzyja
podejsciu data-driven. Wstgpne proby oparte na regresji wie-
lorakiej nie uchwycity bezwtadno$ci cieplnej i nieliniowosci
procesu [6 — 9]. Rekurencyjne sieci neuronowe (RNN),
zwlaszcza LSTM i ich odmiany dwukierunkowe (BiLSTM),
pozwalaja uczy¢ si¢ dtugoterminowych zaleznos$ci i popraw-
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make it possible to learn long-term dependencies and
correctly reproduce diurnal and seasonal fluctuations;
however, they require continuous, normalised time series and
longer training [4, 14, 15, 20, 21]. At the same time, tree-
-based models have been developed: random forests and
gradient boosting (GBM, XGBoost), which combine strong
approximation capability with interpretability and short
training time [10 — 12]. In road applications it has been shown
that boosted trees can outperform classical procedures for
temperature correction of asphalt layers and that machine
learning represents a valuable alternative to empirical
schemes in the context of FWD/TSD [5, 13]. Table-based
models must be “given memory” through feature engineering
(lags, time encoding) in order to emulate sequence
processing. More recent work explores hybrid approaches:
physics-informed neural networks (PINN) integrate heat-
-conduction equations with data, enabling simultaneous
estimation of material parameters and temperature
distribution [16]; other solutions combine neural and tree-
-based components or incorporate classical correction
formulas as inputs, achieving improved accuracy over single
methods [17, 18]. Despite progress, many studies rely on
short campaigns and specific local conditions, which
highlights the need for systematic comparisons on longer,
field-based time series and evaluation of model usefulness in
practice (e.g., FWD/TSD deflection normalisation). The
review in [6] emphasises the lack of analyses based on long,
consistent measurement sequences and diverse climatic and
structural conditions, which limits the comparability of
results. Likewise, the study [13] demonstrated the advantage
of boosted trees over the empirical BELLS3 in estimating
layer temperature for FWD/TSD correction, but it concerned
a single location and did not include systematic confrontation
with sequence models. In light of these observations, the
present article fills the identified gap by a direct comparison
of RNN and XGBoost on year-long field data and discussion
of implementation implications.

The collected sources demonstrate that machine-learning
methods, both recurrent neural networks and tree ensembles,
significantly outperform classical regression models in
predicting asphalt-layer temperatures and thereby in
FWD/TSD temperature correction. Most existing studies,
however, rely on data from short experiments and seldom
account for local climatic conditions and pavement
characteristics. There is a lack of models calibrated on long-
term meteorological data and continuous field temperature
measurements. No systematic comparison of RNN and tree-
-based model performance on such data has been conducted,
and thus it remains unclear which technique better handles
local climate variability, which features are most important, and
how this translates into correction accuracy. The purpose of this
paper is to fill this gap. It employs and compares recurrent
neural networks and tree-based models (random forest,
gradient boosting) based on year-long meteorological
monitoring and field measurements, simultaneously assessing
their usefulness for evaluating the structural condition of road
pavements.

nie odtwarza¢ wahania dobowe oraz sezonowe; wymagaja
jednak ciagtych, znormalizowanych szeregéw czasowych
i dluzszego treningu [4, 14, 15, 20, 21]. Jednoczes$nie rozwi-
jano modele drzewiaste: lasy losowe i wzmacnianie gradien-
towe (GBM, XGBoost), ktore tacza duza sitg aproksymacyj-
na z interpretowalnoscia i krotkim czasem uczenia [10 — 12].
W zastosowaniach drogowych wykazano, ze boosted trees
moga przewyzsza¢ klasyczne procedury korekcyjne tempera-
tury warstw asfaltowych, a uczenie maszynowe stanowi war-
to$ciowa alternatywe dla schematéw empirycznych w kontek-
scie FWD/TSD [5, 13]. Modelom tablicowym trzeba ,,dopi-
sa¢ pamig¢” przez inzynieri¢ cech (lagi, kodowanie czasu),
aby emulowa¢ przetwarzanie sekwencji. Nowsze prace eks-
ploruja podejscia hybrydowe: fizycznie informowane sieci
neuronowe (PINN) integruja réwnania przewodnictwa ciepl-
nego z danymi, umozliwiajac jednoczesne szacowanie para-
metréw materiatowych i rozktadu temperatury [16]; inne roz-
wigzania tacza komponenty neuronowe i drzewiaste badz wia-
czaja klasyczne formuty korekcyjne jako wejscia, uzyskujac
zysk doktadnosci wzgledem pojedynczych metod [17, 18].
Mimo postepow, wiele badan bazuje na krotkich kampaniach
i specyficznych warunkach lokalnych, co podkresla potrzebg
systematycznych poréwnan na dtuzszych, terenowych szere-
gach czasowych oraz oceny przydatno$ci modeli w praktyce
(np. normalizacja ugig¢ FWD/TSD). Przeglad w [6] akcentu-
je niedostatek analiz opartych na dlugich, spojnych ciagach
pomiarowych oraz na zr6znicowanych warunkach klimatycz-
nych i konstrukcyjnych, co ogranicza poréwnywalno$¢ wnio-
skow. Z kolei praca [13] wykazata przewage boosted trees
nad empirycznym BELLS3 w szacowaniu temperatury warstw
w przypadku korekcji FWD/TSD, lecz dotyczyta pojedyn-
czej lokalizacji i1 nie obejmowata systematycznej konfronta-
¢ji zmodelami sekwencyjnymi. W $wietle tych obserwacji ar-
tykut wypenia zidentyfikowana luk¢ przez bezposrednie po-
rownanie RNN i XGBoost na rocznych danych terenowych
oraz omowienie implikacji wdrozeniowych.

Zebrane zrodta dowodza, ze metody uczenia maszynowe-
go, zardbwno rekurencyjne sieci neuronowe, jak i ensemble
drzew znacznie przewyzszaja klasyczne modele regresyjne
W prognozowaniu temperatury warstw asfaltowych i tym samym
w korekeji ugie¢ FWD/TSD. Wigkszo$¢ dotychczasowych ba-
dan opiera si¢ jednak na danych z krotkotrwatych ekspery-
mentow i rzadko uwzglednia lokalne warunki klimatyczne
oraz specyfike nawierzchni. Brakuje modeli kalibrowanych
na dlugoterminowych danych meteorologicznych i na cia-
gltych, terenowych pomiarach temperatury. Nie przeprowa-
dzono systematycznego poréwnania efektywnosci RNN i mo-
deli drzewiastych na takich danych, dlatego nie wiadomo,
ktora technika lepiej radzi sobie z lokalng zmienno$cig klima-
tu, jakie cechy sa najwazniejsze i jak przektada si¢ to na do-
ktadno$¢ korekeji ugie¢. Artykut ma na celu wypehienie tej
luki. Wykorzystuje i porownuje rekurencyjne sieci neurono-
we oraz modele oparte na drzewach (random forest, gradient
boosting) bazujacych na danych z rocznego monitoringu me-
teorologicznego i pomiardéw terenowych, oceniajac jednocze-
$nie ich przydatno$¢ do diagnostyki no$nosci nawierzchni
sieci drogowych.
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Data description
and dataset preparation

Description of the test site. The data for the analysis came
from a specially prepared test site comprising a network of
sensors installed in a new asphalt pavement structure and a
meteorological station. Temperature measurements were
performed using platinum resistance thermometers Pt100 of
class A (in accordance with IEC 60751), placed at the target
depths of the profile (0, 2, 6, 10, 16, 22 cm). The sensors were
installed during the construction of each new pavement layer
by means of a narrow cut. The pavement structure had the
following layer arrangement: mechanically stabilised crushed
aggregate (auxiliary base course); base course of asphalt
concrete BA 25 with 35/50 asphalt; binder course AC16W
with DE 30B asphalt and wearing course SMA 12 with a
thickness of 4 cm with OL30B asphalt. The test section was
prepared as a segment closed to traffic, which limited the risk
of cable damage and sensor displacement. In this way, the
influence of accelerated material ageing processes and local
damage, which affect the thermal properties of the pavement,
was also minimised. Closing the tested section to traffic and
using a homogeneous structure made it possible to eliminate
undesirable disturbances, so that the recorded temperature
profiles reflected mainly meteorological conditions and the
thermal inertia of the layer system. The data were collected
from March to October, which yielded 10 531 observations
at 30-minute intervals. Temperature was recorded at six
points in the asphalt-layer profile: at the surface (0 cm) and
at depths of 2, 6, 10, 16 and 22 cm. In addition, wind speed
and direction, relative humidity, air temperature at different
heights, dew point, daily precipitation and extreme daily
temperature values were recorded. Each record therefore
contained both meteorological variables and temperature in
the asphalt layers. The arrangement of the probes in
successive layers made it possible to reconstruct the vertical
temperature profile and analyse heat exchange between
layers. The obtained data served as the basic input dataset for
building machine learning models. The values of the
predicted temperatures at depth were treated as dependent
variables. In turn, the predictors were environmental
variables: pavement surface temperature and humidity. All
data were synchronised using the assigned time-interval step.
The analysed input dataset had the character of a time series
— each observation was recorded at a specific moment, and
the input variables showed dependence on the diurnal and
seasonal (temporal) cycle.

Before modelling was undertaken, a data quality analysis
was carried out. The initial assessment of the dataset
structure indicated strong correlation of the temperature at
depths of 2, 6, 10, 16 and 22 cm with the temperature read
at the surface (h = 0 cm) and with humidity. The remaining
features showed a weaker correlation relationship. Reducing
the number of input features was very important, since one
of the aims of developing an effective model was the
possibility of using easily available environmental data.
Therefore, forecasting the temperature at a given depth
required the use of direct features that are easy to obtain over
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Opis danych i przygotowanie zbioru

Opis stanowiska badawczego. Dane do analizy pochodzi-
ly z specjalnie przygotowanego stanowiska badawczego, obej-
mujacego sie¢ czujnikow zainstalowanych w nowej konstruk-
cji nawierzchni asfaltowej oraz stacjg meteorologiczna. Pomia-
ry temperatury realizowano termometrami platynowymi Pt100
rezystancyjnymi klasy A (zgodnie z norma IEC 60751),
umieszczonymi na docelowej gigbokosci profilu (0, 2, 6, 10,
16, 22 cm). Czujniki wprowadzano podczas wbudowywania
kazdej nowej warstwy konstrukcji nawierzchni przez waskie
nacigcie. Konstrukcja nawierzchni miata nastepujacy uktad
warstw: kruszywo tamane stabilizowane mechanicznie (war-
stwa podbudowy pomocniczej); podbudowa z betonu asfalto-
wego BA 25 z asfaltem 35/50; warstwa wiazaca AC16W z as-
faltem DE 30B oraz warstwa §cieralna SMA 12 o grubo-
sci 4 cm z asfaltem OL30B. Stanowisko badawcze przygoto-
wano jako odcinek wytaczony z ruchu, co ograniczyto ryzyko
uszkodzen przewodow i przemieszczen czujnikow. W ten spo-
s6b zminimalizowano rowniez wplyw procesow przyspieszo-
nego starzenia materiatu i uszkodzen lokalnych, ktore oddzia-
tuja na wlasciwosci termiczne nawierzchni. Wyltaczenie bada-
nego odcinka z ruchu oraz zastosowanie jednorodnej konstruk-
cji pozwolito wyeliminowa¢ niepozadane zaktocenia, dzigki
czemu rejestrowane profile temperatury odzwierciedlaty gtow-
nie warunki meteorologiczne oraz bezwtadno$¢ cieplna ukta-
du warstw. Dane zbierano w okresie od marca do pazdzierni-
ka, co dato 10 531 obserwacji w 30-minutowych odstgpach.
Rejestrowano temperaturg w sze$ciu punktach profilu warstw
asfaltowych: na powierzchni (0 cm) oraz na glgbokosci
2,6,10, 16122 cm. Dodatkowo zapisywano predkosc i kieru-
nek wiatru, wilgotno$¢ wzgledna, temperatur¢ powietrza
na réznych wysokosciach, punkt rosy, dobowy opad oraz eks-
tremalne wartosci temperatury dobowej. Kazdy rekord zawie-
rat zatem zaréwno zmienne meteorologiczne, jak i temperatu-
r¢ w warstwach asfaltowych. Rozmieszczenie sond w kolej-
nych warstwach umozliwiato odtworzenie pionowego profi-
lu temperatury i analiz¢ wymiany ciepta migdzy warstwami.
Uzyskane dane postuzyly jako podstawowy zbior wejsciowy
do budowy modeli uczenia maszynowego. Wartosci progno-
zowanych temperatur na gigbokosci miaty charakter zmien-
nych zaleznych. Natomiast rol¢ predyktoréw stanowity
zmienne o charakterze srodowiskowym: temperatura po-
wierzchni nawierzchni oraz wilgotnos¢. Wszystkie dane zo-
staty zsynchronizowane przez przypisany krok interwatu cza-
sowego. Analizowany zbidr wejSciowy miat charakter szere-
gu czasowego — kazda obserwacja byla rejestrowana w okre-
$lonym momencie, a zmienne wejsciowe wykazywaty zalez-
no$¢ od cyklu dobowego oraz sezonowego (czasowego).

Zanim przystapiono do modelowania, wykonano analiz¢
jakosci zbioru danych. Wstgpna ocena struktury zbioru wska-
zala na silne skorelowanie temperatury na gteboko-
$ci: 2, 6, 10, 16122 cm z temperatura odczytana na powierzch-
ni (h = 0 cm) 1 wilgotnos$cia. Pozostate cechy wykazywatly
mniejszy zwiazek korelacyjny. Redukcja ilo$ci cech wejscio-
wych miata bardzo duze znaczenie, gdyz jednym z celow
opracowania skutecznego modelu byta mozliwo$¢ zagospo-
darowania tatwo dostgpnych danych srodowiskowych. Zatem
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the period from several to several dozen hours back from the
measurement.

Data were also checked in terms of the number of valid
observations, outliers and redundancy (Table 1). Outliers were
determined on the basis of the 95 percent confidence interval
for the mean. Redundancy of features (predictors) was assessed
using Pearson statistics in the same way as in principal
component analysis. Most meteorological variables (wind
speed, wind direction, humidity, air temperature) had about
93% valid observations and few outliers. The data describing
rainfall contained about 15.5% outliers, which suggests that
intense precipitation occurred rarely and had an incidental
character.

Table 1. Data quality check report
Tabela 1. Raport sprawdzenia jakosci danych

prognozowanie temperatury na danej gtebokosci wymagato
zastosowania cech bezposrednich, tatwych do pozyskania
w okresie pomiaru od kilku do kilkunastu godzin wstecz.
Dokonano réwniez sprawdzenia danych pod katem liczby
waznych obserwacji, wartosci odstajacych i nadmiarowosci
(tabela 1). Wartosci odstajace okreslono na podstawie 95-pro-
centowego przedzialu ufnosci w przypadku sredniej. Nato-
miast redundancj¢ cech (predyktoréw) oceniano statystyka
Pearsona w taki sam sposob jak w przypadku analizy sktado-
wych gtownych. Wigkszo§¢ zmiennych meteorologicznych
(predkos¢ wiatru, kierunek wiatru, wilgotnosé, temperatura
powietrza) miata ok. 93% waznych obserwacji i niewiele war-
tosci odstajacych. Dane opisujace opad deszczu zawieraly

VarableZmienna Scaletypertypsali NRNIIGE 00N RO o Procentodstajaeyeh  Jakosé sl
Wind speed/Predkos¢ wiatru quantitative/ilosciowy 9814 93,2 1 0,01 outlying/odstajace
Wind direction/Kierunek wiatru — quantitative/ilosciowy 9814 93,2 0 0 OK
Humidity/Wilgotnos¢ quantitative/ilosciowy 9814 93,2 0 0 OK
Temp 300cm quantitative/ilosciowy 9814 93,2 0 0 redundant/nadmiarowe
Temp 20cm quantitative/ilosciowy 9814 93,2 0 0 redundant/nadmiarowe
Temp Ocm quantitative/ilosciowy 9814 93,2 0 0 OK
Dewpoint/Punkt rosy quantitative/ilosciowy 9814 93,2 0 0 OK
Rainfall/Opad quantitative/ilosciowy 9814 93,2 1518 15,5 outlying/odstajace
P4 22 cm quantitative/ilosciowy 10531 100 0 0 OK
P4 16cm quantitative/ilosciowy 10531 100 0 0 redundant/nadmiarowe
P4 10cm quantitative/ilosciowy 10531 100 0 0 redundant/nadmiarowe
P4 6cm quantitative/ilosciowy 10531 100 0 0 redundant/nadmiarowe
P4 2cm quantitative/ilosciowy 10531 100 0 0 redundant/nadmiarowe

The designation P4 is the identifier of the measurement
point. It is a suffix to which the depth of the measurement
probe location was assigned. Some pavement temperature
readings, including predictors in the dataset, were characterised
by missing data. Their amount was about 6.8%, which can be
regarded as an acceptable level. Nevertheless, machine learning
models such as RNN (and its variants such as LSTM, GRU)
require continuous, sequential input data [20]; otherwise,
missing data will disturb the temporal order and increase the
risk of overfitting. Since the number of gaps was small, the
Kalman filter [19, 21], which is effective for time series, was
used to fill them. After filling gaps in the input dataset with the
Kalman filter, resulting from the elimination of outliers of the
nature of reading errors, all numerical variables were
normalised.

Thanks to the standardisation performed, the filling in of data
and the selection of predictors, a consistent dataset was
prepared, which was used to train recurrent neural network
models and gradient random trees. The choice of filtering and
feature selection techniques was made in the context of earlier
studies from the literature [17].

ok. 15,5% warto$ci odstajacych, co sugeruje, ze intensywne
opady wystepowaly rzadko i miaty charakter incydentalny.

Oznaczenie P4 to identyfikator punktu pomiarowego. Jest to
sufiks, do ktérego zostata przypisana glgbokos¢ umiejscowie-
nia sondy pomiarowej. Niektore odczyty temperatury w na-
wierzchni, w tym predyktory w zbiorze danych, odznaczaty si¢
brakiem danych. Ich ilo$¢ wynosita ok. 6,8%, co mozna uznaé
za poziom akceptowalny. Niemniej jednak modele uczenia ma-
szynowego, takie jak RNN (i jego warianty jak LSTM, GRU),
wymagaja ciaglych, sekwencyjnych danych wejsciowych [20],
w przeciwnym razie braki danych zaburza kolejno$¢ czasowa
oraz zwigksza ryzyko przeuczenia. W zwiazku z tym, ze liczba
brakoéw byta niewielka, zastosowano do ich uzupehienia filtr
Kalmana [19, 21] skuteczny przy szeregach czasowych. Po wy-
pehieniu luk w zbiorze wejsciowym filtrem Kalmana, bedacych
efektem eliminacji wartosci odstajacych o charakterze btedu od-
czytu, wszystkie zmienne numeryczne zostaty znormalizowane.

Dzigki przeprowadzonej standaryzacji, uzupetnieniu da-
nych i selekcji predyktoré6w przygotowano spojny zbior, kto-
ry poshuzyt do trenowania modeli rekurencyjnych sieci neu-
ronowych i gradientowych drzew losowych. Wyboru technik
filtracji 1 selekcji cech dokonano w kontekscie wczesniej-
szych badan z literatury [17].
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Architecture and parameters of the selected
models

The project was based on two models: recurrent neural
networks (RNN) with LSTM layers and gradient-boosted
decision-tree models (XGBoost). The first of these was used
for processing time sequences, and the second for analysing
tabular data with delays (lags). The architecture of the models,
the data-preparation process, the learning parameters and the
results on test datasets are discussed in detail. As predictors,
the following variables were used:

m pavement surface temperature on the asphalt pave-
ment,

m air humidity.

In turn, the sought values (dependent variables) were the
temperatures at defined pavement depths: 2, 6, 10, 16 and 22 cm.
Interpolation at depths between measurement points requires
linear interpolation. The final form of the model included the
variable depth, allowing temperature interpolation at any
depth. All models were evaluated using four metrics:
coefficient of determination (R?); root mean square error
(RMSE); mean absolute percentage error (MAPE); and mean
absolute error (MAE).

Recurrent neural networks (RNN/LSTM) are suited for
analysing time series, because in each step they update a
hidden state which carries information from previous
observations. The LSTM architecture applied in the project
enables the model to learn long-term dependencies by using
gating mechanisms that control the flow of information.
Data preparation consisted of creating sequences of 3 h
(6 samples) composed of the values of pavement surface
temperature (temp_0 cm) and humidity, and in normalising
input variables.

Two baseline architectures were built in the initial trials:
MODELI (a single LSTM layer, 256 neurons) and MODEL?2
(a system with two LSTM layers with dropout regularisation).
Both variants confirmed the usefulness of the sequential
approach for reproducing diurnal and seasonal fluctuations,
with MODEL2 bringing a moderate improvement in quality
compared with MODEL1 (a gain of several percentage points
of R? and an RMSE reduction of approx. 1°C). Due to the
compromise between fidelity of reproduction and complexity,
the bidirectional architecture MODEL3 was adopted as the
reference model for further analyses. The comparison of model
characteristics is shown in Table 2.

The model described as MODELZ3 introduces bidirectional
LSTM (BiLSTM), which process the sequence both in the di-
rection of increasing and decreasing time. The results from
both directions are concatenated and passed to dense layers.

Table 2. Characteristics of the adopted RNN models
Tabela 2. Charakterystyka przyjetych modeli RNN

Input data (predictors)/

] Dane wejsciowe (predyktory) Dlugosé¢ sekwencji (okno czasowe)
LSTM (MODELI1,  temp 0 cm, humidity/temp 0 cm, 6 steps x 30 min (3 h)/
MODEL 2) wilgotnos¢ 6 krokow x 30 min (3 h)
BiLSTM+LSTM temp_0 cm, humidity/temp 0 cm, 6 steps x 30 min (3 h)/
(MODEL3) wilgotnos¢ 6 krokow x 30 min (3 h)
12/2025 (nr 640)

Sequence length (time window)/

Architektura i parametry wybranych modeli

Projekt bazowat na dwoch modelach: rekurencyjnych sie-
ciach neuronowych (RNN) z warstwami LSTM oraz gradiento-
wych modelach drzew decyzyjnych (XGBoost). Pierwszy z nich
wykorzystano do przetwarzania sekwencji czasowych, drugi
do analizy danych tabelowych z opdznieniami (lagami). Szcze-
gotowo omdéwiono architekturg modeli, proces przygotowania
danych, parametry uczenia oraz wyniki na zbiorach testowych.
W rezultacie jako predyktory stanowity zbidr zmiennych:

m temperatura powierzchni na nawierzchni asfaltowe;;

m wilgotno$¢ powietrza.

Natomiast warto$ciami poszukiwanymi (zmienne zalezne)
byta temperatura na zdefiniowanej glgbokosci nawierzch-
ni: 2, 6, 10, 16 1 22 cm. Interpolacja na glgbokosci pomigdzy
punktami pomiarowymi wymaga interpolacji liniowej. Ostat-
nia posta¢ modelu uwzgledniata zmienna glgbokos¢ pozwa-
lajaca na interpolacj¢ temperatury na dowolnej gltgbokosci.
Wszystkie modele oceniano za pomoca czterech metryk:
wspotczynnika determinacji (R?); pierwiastka btedu $rednio-
kwadratowego (RMSE); sredniego procentowego bl¢du pro-
gnozy (MAPE); éredniego btedu bezwzglednego (MAE).

Rekurencyjne sieci neuronowe (RNN/LSTM) sa przysto-
sowane do analizy szeregdw czasowych, poniewaz w kazdym
kroku aktualizuja ukryty stan, ktory przenosi informacj¢ z po-
przednich obserwacji. Zastosowana w projekcie architektura
LSTM umozliwia modelowi uczenie si¢ dlugoterminowych
zalezno$ci, wykorzystujac mechanizmy bramkujace, ktore
kontroluja przeptyw informacji. Przygotowanie danych pole-
galo na utworzeniu sekwencji o dtugosci 3 h (6 probek) zto-
zonych z wartosci temperatury powierzchni (temp 0 cm)
i wilgotno$ci oraz na normalizacji zmiennych wejSciowych.

W ramach wstepnych prob zbudowano dwie architektury
odniesienia: MODEL1 (pojedyncza warstwa LSTM, 256 neu-
rondéw) oraz MODEL?2 (uktad z dwiema warstwami LSTM
z regularyzacja dropout). Oba warianty potwierdzily przy-
datnos$¢ podejscia sekwencyjnego do odwzorowania wahan
dobowych i sezonowych, przy czym MODEL2 przyniost
umiarkowany wzrost jako$ci w poréwnaniu z MODELT (zysk
rzgdu kilku punktéw procentowych R? i redukcja RMSE
o ok. 1°C). Ze wzgledu na kompromis mi¢dzy wiernoscia
odwzorowania a ztozonoscia, jako model referencyjny do dal-
szych analiz przyjgto architekturg dwukierunkowa MODEL3.
Poréwnanie charakterystyki modeli przedstawiono w tabeli 2.

Model opisany jako MODEL3 wprowadza dwukierunkowe
LSTM (BIiLSTM), ktore przetwarzaja sekwencj¢ zarowno
w kierunku rosnacej, jak i malejacej osi czasu. Wyniki z obu
kierunkoéw sa taczone (concatenate) i przekazywane do
warstw gestych. Model zawieral dwie warstwy LSTM (jed-

Output data (predicted variable)/Dane wyjSciowe
(zmienna prognozowana)

temperature at the given depth h at time t/temperatura na
zadanej glgbokosci h w chwili t

temperature at the given depth h at time t/temperatura na
zadanej glgbokosci h w chwili t
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The model included two LSTM Table 3. Final architecture of MODEL3 na dwukierunkowa: BiLSTM +
layers (one bidirectional: BiL- Tabela 3. Architektura koricowa MODEL3 jedna jednokierunkowa: LSTM)
STM, and one unidirectional: Layer (type)/ Output  Parame- | Trainable/ | jedng warstwe gesta z taczna

Shape/Ksztalt ters/Para- Podlegajace

LSTM) and one dense layer, Warstwa (typ) liczba parametrow 682 561 (ta-

wyjscia metry uczeniu
with a total of 682 561 parame- bidirectional 4 (Bidirectional/ bela 3). Oprécz dwukierun-
ters (Table 3). In addition to the  pyukierunkowy) (none, 6, 512) 530432 Y kowej warstwy LSTM, ktora su-
bidirectional LSTM layer, batch normalization_15 (Baich marycznie miata 512 neuronow,
which had 512 neurons in total, Normalization/Normalizacja (none, 6,512) 2048 Y model zapewnial réwniez war-
the model also provided a barch- Wsadowa) stwe typu batch_normalization ()
-normalisation layer () aimed at  activation_I5 (Activation) (none, 6,512) 0 Y majaca na celu uwzglednienie
including the normalisation sta- dropout (Dropout/Warstwa 256 0 v etapu normalizacji w celu popra-
i ; i drzucania) {none, 256) G . .
ge to improve learning stability. © wy stabilnosci uczenia. W efekcie
As.a result, ?dditional nor‘mali- {i]t;rrls_é:a(lljg%hl\/’[[)layer/ s ) 147712 Y mozna bylglunik.natc' dode.ltkovyej
sation of variables and saving of normalizacji zmiennych i zapisu
the series of results of this pro- batch normalization_l4 (Batch serii wynikow tego procesu zgro-
din th . biect Normalization/Normalizacja (none, 64) 256 Y d bickei .
cess store. in the recipe () objec wsadowa) madzonego w obiekcie reczpe.().
were avoided. To improve the o 1) W celu poprawy prognozy zmia-
(none, 64) 0 Y

prediction of temperature chan- Aktywacja) ny temperatury wprowadzono
ge, a second classical LSTM dense 15 (Dense/Warstwa gesta) (none, 32) 2080 Y druga klasyczna warstwg LSTM
layer (Istm_14) with 64 neurons (Istm_14) o liczbie neuronow 64.

. o dense 14 (Dense/Warstwa ggsta) (none, 1) 33 Y -
was introduced. Training was i ; Trening przeprowadzono z ana-
ied ith th ¢ Total params/liczba parametrow: 682561 (2.60 MB) logi . tawieniami iak
carried out with the same set- pipgple params/Parametry podlegajace uczeniu: 681409 (2.60 MB) 0gicznymi ustawieniami ja

tings as before, but thanks to the Non-trainable params/Parametry niepodlegajace uczeniu: 1152 (450 KB) wecze$niej, ale dzigki zastosowa-
use of carly stopping (patience 1% Bl e (0 s it ol vt i wezesnego zatzymywani
=30), the number of epochs did BiLSTMliczba cech/wyjsé na krok po warstwie BILSTM. (patience = 30) liczba epok nie
not exceed 70 (Figure 1). przekroczyta 70 (rysunek 1).
The quality of fitting model-based data in MODELS3 to the Jako$¢ dopasowania danych modelowych w MODEL3
experimental data did not significantly improve compared to ~ do eksperymentalnych nie ulegta znacznej poprawie
MODEL2. The maximum estimation error was 3.28°C,  w poréwnaniu do MODEL2. Maksymalny btad estymacji wy-
whereas the fitting quality R?> was > 0.81, and in most cases  nidst 3,28°C, natomiast jako$¢ dopasowania R? byta > 0,81,
> (0.9. The summary results of the fit-quality metrics are  a w wigkszos$ci przypadkoéw > 0,9. Zbiorcze rezultaty metryk

presented in Table 4. jakosci dopasowania przedstawiono w tabeli 4.
A Training error [loss]/Blad uczenia [loos] A Training error [loss]/Btad uczenia [loos] A Training error [loss]/Btad uczenia [loos]
depth 10 cm/glebokos¢ 10 cm depth 16 cm/glgbokosé 16 cm depth 22 cm/glebokos¢ 22 cm
: g 100 :
90
100 : : 75
: 60 2
: : 50
50 : H
: 30 Lu,_,_& 25
: B =) >
.. . 30 60 90
A Training error [loss]/Btad uczenia [loos] A Training error [loss]/Blad uczenia [loos]
depth 2 cm/glgbokos¢ 2 cm depth 6 cm/glgbokos¢ 6 cm
- Type/Typ/
90 : - 100 = training/trening
— — validation/walidacja
60 ; : dashed line — minimum validation loss/
: v przerywana linia — minimum walidacji
30 1, 50
‘d.a_. 1o b L. N il W
= » T >
0 30 60 90 0 30 60 90

Fig. 1. RNN model training graph (MODELS3)
Rys. 1. Wykres trenowania modelu RNN (MODEL3)
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Table 4. Model fit metrics (test set): MODEL1, MODEL2 and MODEL3
Tabela 4. Metryki dopasowania modeli (zbior testowy): MODELI, MODEL2 i MODEL3

MODEL1
Location/
Lokalizacja  RMSE [°C] MAE [°C] MAPE [%] R

P4 2cm 3,63 2,19 1,72 088 271
P4 6cm 3,16 2,1 11,77 088 241
P4 10 cm 3,06 2,08 1248 087 201
P4 16 cm 3,12 2,05 1,63 084 228
P4 22 cm 3,14 223 1387 083 338

RMSE [°C] MAE [°C] MAPE [%] R?

MODEL2 MODEL3

RMSE [°C] MAE [°C] MAPE [%] R?

1,94 10,56 0,87 33 1,69 12,4 09
1,94 1024 091 2,73 1,78 1,71 091
1,95 1229 094 274 1,82 15,1 0,9
1,84 9,76 0,92 248 1,63 10,9 0.9
2,0 1,60 0,89 3,28 1,76 1334 081

RMSE - Root Mean Square Error/blad sredniokwadratowy; MAE — Mean Absolute Error/$redni btad bezwzglgdny; MAPE — Mean Absolute Percentage Error/$redni
procentowy blad bezwzgledny; R? — Coefficient of Determination/wspotczynnik determinacji

The results in Table 4 indicate very good effectiveness of the
RNN technique for predicting temperature changes in which the
data show dependence on temporal trends. The only advantage
of using the bidirectional network MODEL3 was a significant
reduction of training time in terms of the number of epochs
needed to obtain the final form of the model, compared with
MODEL! and MODEL2. The maximum MAPE error was less
than 13.87%. Analysis of the results allowed concluding that
the effectiveness of the bidirectional RNN technique in
MODELZ3 turned out to be the same as in MODEL2. It enabled
identifying both diurnal and seasonal temperature fluctuations.
The prediction was obtained on the basis of measurements of
temperature and humidity from the previous 3 h.

Gradient-boosted decision-tree models XGBoost
constitute the second category of applied algorithms. The main
idea is to create a sequence of simple trees, each successive one
being constructed to predict the residuals generated by the
preceding tree [12]. It can be demonstrated that such a
procedure of “additive weighted expansion” of trees ultimately
allows an excellent fit of predicted values to observed values,
even when the nature of the relationship between predictors
and the dependent variable is highly complex (e.g., nonlinear).
The main advantage of this technique is its reduced sensitivity
to missing data and the ability to perform optional data scaling.
In the case of a large dataset, omitting this step is convenient,
which results from the fact that at any time the results of the
output variable (tensor y) can be fully interpreted.
Nevertheless, this technique predicts the value of tensor y with
respect to the predictors found in the same record. Therefore,
the time-sequence structure, as in RNN networks, has no
application here. Constructing such a boosted-tree model
required additional operations related to data transformation.
This consisted of applying additional variables in the form of
delays, i.e., lags. Constructing lags consists of creating new
features that represent the value of a given variable from
previous time steps. In the R script this was done using the
dplyr library and the lag() instruction.

Experimental use of RNN and XGBoost techniques for
predicting temperature at any depth of the pavement
structure. Two experimental models were adopted:
E _XGBoost and E_MODELI, consisting of predicting
temperature at the moment t = 0 together with an explicitly
introduced variable depth (Table 5).
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Wyniki w tabeli 4 §wiadcza o bardzo dobrej skutecznosci
techniki RNN do prognozowania zmian temperatury, w ktorych
dane wykazuja zalezno$¢ od trendow czasowych. Jedyna zale-
ta stosowania MODELS3 sieci dwukierunkowej byto znaczne
ograniczenie czasu treningu w postaci liczby epok do uzyska-
nia ostatecznej postaci modelu w stosunku do MODELI i MO-
DEL2. Maksymalny blad MAPE byl mniejszy niz 13,87%.
Analiza wynikow pozwolita stwierdzi¢, ze skutecznosc tech-
niki RNN o charakterze dwukierunkowych w MODEL3 oka-
zata si¢ by¢ taka sama jak w MODEL?2. Pozwolita ona na zi-
dentyfikowanie zarowno wahan dobowych, jak i sezonowego
rozktadu temperatury. Prognoza zostata uzyskana na podstawie
pomiaru temperatury i wilgotnosci z okresu 3 h wstecz.

Gradientowo wzmacniane modele drzew decyzyjnych XG-
Boost stanowia druga kategori¢ zastosowanych algorytmow.
Gloéwna ideaq jest tworzenie ciagu prostych drzew, z ktorych kaz-
de kolejne jest zbudowane do predykcji reszt generowanych przez
poprzednie [12]. Mozna udowodnic, ze taka procedura ,,addytyw-
nego rozwinigcia wazonego” drzew pozwoli w efekcie na dosko-
nate dopasowanie wartosci przewidywanych do wartosci obser-
wowanych, nawet jesli sama natura relacji pomigdzy predykto-
rami a zmienng zalezna jest bardzo ztozona (np. nieliniowa).
Glowna zaleta stosowania tej techniki jest jej zmniejszona wraz-
liwos$¢ na brakujace dane oraz wykonanie opcjonalnego skalowa-
nia danych. W przypadku duzego zbioru danych pominigcie te-
go etapu jest komfortowe, co wynika z faktu, ze w kazdej chwi-
li mozna interpretowac w petni wyniki zmiennej wyjsciowej (ten-
soray). Niemniej jednak jest to technika prognozujaca dana war-
to$¢ tensora y wzgledem predyktoréw znajdujacych si¢ w tym sa-
mym rekordzie. Zatem struktura sekwencji czasowych jak w sie-
ciach RNN nie ma tu zastosowania. Budowa takiego modelu drzew
wzmacnianych wymagata dodatkowych zabiegéw zwiazanych
z transformacja danych. Polegato to na zastosowaniu dodatkowych
zmiennych w postaci opoznien, tzw. lagow. Budowanie lagow po-
lega na tworzeniu nowych cech, ktdre reprezentuja wartos¢ danej
zmiennej z poprzednich krokow czasowych. W skrypcie jezyka R
zostato to zrobione za pomoca biblioteki dplyr i instrukeji lag ().

Eksperymentalne wykorzystanie technik RNN i XGBo-
ost do predykcji temperatury na dowolnej glebokosci kon-
strukcji nawierzchni. Przyjgto dwa eksperymentalne mode-
le: E_ XGBoost oraz E_ MODELI polegajace na prognozie
temperatury w chwili t = 0 wraz ze zmienna gtgbokos$¢ wpro-
wadzona jawnie (tabela 5).
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Table 5. Characteristics of the adopted experimental models
Tabela 5. Charakterystyka przyjetych modeli eksperymentalnych

Model Input data (predictors)/Dane wejsSciowe

(predyktory)
E XGBoost temp_Ocm humidity, hour_sin, hour cos,
— depth (cm)
E MODELLI temp_Ocm humidity, hour sin, hour cos,

(RNN + depth + rain) depth (cm)

The E_XGBoost variant was designed with the aim of
improving prediction accuracy and enabling temperature
interpolation between sensors. The key modifications included
(Table 5):

e introduction of the predictor “depth”: information about
depth was added to the feature set, allowing the model to learn
the relationship between depth and temperature;

e continuation of time encoding: the variables hour_sin and
hour_cos were retained;

e cxpansion of the parameter space: by increasing
max_depth to 100 and reducing nrounds to 368, the model
could build more complex trees while minimising the risk of
overfitting.

Training proceeded analogously to the classical model but
required slightly more time due to the higher complexity of
the trees in accordance with the learning-process parame-
ters (Table 6). The results exceeded the initial expecta-
tions, namely: RMSE amounted to 0.97°C, R? = 0.988,
MAE = 0.67°C, and MAPE = 4.51%, which means that the
model reproduced the temperature distribution almost ideally.
The results indicated that the model predicted temperature
values very well in the variant where the variable depth was
treated as a predictor. The fit results of the experimental
values to those estimated by the model, broken down by
depth, are presented in Figure 2. They confirmed very good
reproduction of temperature changes within the pavement
profile in the case of h > 0 cm. The E_XGBoost model
accurately reproduced both diurnal fluctuations and the drift
of its variation associated with the daily cycle. It is worth
noting that one of the advantages of this technique is the
possibility of rapid updating of model weights using a new
dataset (batch), which makes it more universal and provides
greater ability to generalise the phenomenon of temperature
variation in the pavement.

Extended RNN model
with depth and rainfall
predictor - E_ MODELL1.
The use of the E__XGBoost
model (Table 5) showed 368 100 005 0
that incorporating depth as

Sequence length (time window)/
Dlugosé¢ sekwencji (okno czasowe)

6 steps (3 h) encoded into tabular features as
lags/6 krokow (3 h) zakodowane w cechy
tablicowe w postaci ,,lagow”

6 steps /6 krokow x 30 min (3 h)

Table 6. Learning parameters of the modified E_XGBoost model
Tabela 6. Parametry procesu uczenia zmodyfikowanego modelu E_XGBoost

nrounds max_depth eta gamma colsample_bytree min_child_weight subample

0,8 1 0,8

Output data (predicted variable)/Dane
wyjSciowe (zmienna prognozowana)

temperature at any depth h (0-22 cm) at time t/
temperatura na dowolnej gtebokosci h (0 + 22 cm)
w chwili t

temperature at any depth h (0-22 cm) at time t/
temperatura na dowolnej glgbokoscei h (0 + 22 cm)
w chwili t

Wariant E_XGBoost zaprojektowano z mysla o popra-
wie doktadnosci i umozliwieniu interpolacji temperatury
pomigdzy czujnikami. Kluczowe modyfikacje obejmowaty
(tabela 5):

e wprowadzenie predyktora ,,glgbokos¢”: do zbioru cech
dodano informacjg¢ o gtebokosci, dzigki czemu model mogt
uczy¢ si¢ zaleznosci migdzy glgbokoscia a temperatura;

e kontynuacje kodowania czasu: zachowano zmienne
hour_sin i hour_cos;

e rozbudowanie przestrzeni parametréw: dzigki zwigksze-
niu max_depth do 100 i zmniejszeniu nrounds do 368, model
mogt budowac bardziej ztozone drzewa, minimalizujac ryzy-
ko przeuczenia.

Trening przebiegal analogicznie jak w modelu klasycz-
nym, ale wymagal nieco wigcej czasu ze wzgledu na wigk-
sza ztozono$¢ drzew zgodnie z parametrami procesu ucze-
nia (tabela 6). Rezultaty przerosty oczekiwania poczatko-
we, a mianowicie: RMSE wyniosto 0,97°C, R? = 0,988,
MAE = 0,67°C, a MAPE = 4,51%, co oznacza, ze model nie-
mal idealnie odwzorowywat rozktad temperatury. Uzyskane
wyniki wskazaty, ze model bardzo dobrze prognozowat war-
tosci temperatury w wariancie, gdzie zmienna gtgboko$¢ zo-
stata potraktowana jako predyktor. Rezultaty dopasowania
wynikow eksperymentalnych do oszacowanych za pomoca
modelu, z podziatem na gigboko$¢, przedstawiono na rysun-
ku 2. Potwierdzity one bardzo dobre odwzorowanie zmiany
temperatury w przekroju nawierzchni w przypadku h > 0 cm.
Model E_ XGBoost doskonale odzwierciedlit zar6wno waha-
nia dobowe, jak rowniez dryf jej zmiany zwigzany z cyklem
dobowym. Nalezy zwrdci¢ uwagg, ze jedna z zalet tej techni-
ki jest mozliwo$¢ szybkiej aktualizacji wag modelu za pomo-
ca nowego zbioru (wsadu), co powoduje, ze jest bardziej uni-
wersalny 1 wykazuje wigksza zdolno$¢ do uogdlnienia zjawi-
ska zmiany temperatury w nawierzchni.

Rozszerzony model RNN
z predyktorem glebokosci
i opadu - E_MODELI.
Zastosowanie modelu
E_XGBoost (tabela 5) wska-
zalo, ze uwzglednienie gle-

a random variable, apart
from improving the accu-
racy of predicting the tem-
perature distribution, also
enabled its interpola-
tion within the pavement
profile in places where sen-

eta (learning rate) — learning rate/wspotczynnik uczenia; gamma — minimum loss reduction
required to make a tree split/minimalna wymagana redukcja funkcji straty przy podziale we-
zta drzewa; max_depth — maximum depth of a single tree; maksymalna gigbokos¢ pojedyn-
czego drzewa; min_child_weight — minimum sum of instance weights needed in a tree leaf/
minimalna suma wag instancji w lisciu drzewa; colsample_bytree — fraction of features ran-
domly sampled for each tree/frakcja cech losowo wybieranych przy budowie kazdego drze-
wa; subsample — fraction of training samples used to build each tree/frakcja probek trenin-
gowych uzywana do budowy drzewa; nrounds — number of boosting iterations (trees)/licz-
ba iteracji boostingowych (drzew); lambda — L2 regularization term on weights (reduces mo-
del variance)/wspotczynnik regularyzacji L2 na wagach (redukuje wariancj¢ modelu)

bokosci jako zmiennej loso-
wej, oprocz poprawy jakosci
predykcji rozktadu tempera-
tury pozwolito rowniez na
jej interpolacj¢ w przekroju
nawierzchni w miejscach,
w ktorych czujniki nie zo-
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sors were not loca-
ted. Due to the tabu-
lar structure, the mo-
del is not able to
explicitly process se-
quence  structure,
i.e., it cannot distin-

Temperature [°C]/Temperatura [°C]

glebokos¢ 2 cm

Temperature [°C]/Temperatura [°C]

A Temperature [°C]/Temperatura [°C]
glebokos$¢ 6 cm

A Temperature [°C]/Temperatura [°C]

. gleboko$¢ 10 cm lebokos$¢ 16 cm
guish whether suc- 4 i
cessive data in time 38 gg
are random or de- 10 10
: 0
pendent on input fe- T T
82 gg 25 23 85 25 Bg g2
atures. Therefore, 8 8 ERX &S ER] %8 8] g8
a further attempt was Temperature [°C]/Temperatura [°C] 2 s - £ N 'g & 2
P glebokos¢ 22 cm ~ © FAF
made to construct an 30 Measurement date/Data pomiaru
experimental model 5,
based this time on 10 blue line — measured, red points — predicted/
) 0 e S . X
the RNN model with €2 20 99 92 62 60 40 90 niebieska hme;( t tentlperatur?u zmlerzoqz,
. Lo S Lo Lo Lo Lo EQ 32 czerwone puni — temperatura przewis ana
the architecture of 3% & :§ 28 £8 18 £& £§ P P e
. 'z 3 - g S| Rz}
layers as in MODE- Z N 2 5 3 =
<
o

L1, designated as
E MODELIL. In this
model, implementa-
tion of an additional
channel in the form

Measurement date/Data pomiaru

of rainfall and depth was included. Both variables required nor-
malisation. Model preparation included:

m introduction of the predictor “depth” — apart from the
sequence of surface temperature and humidity, an input
representing depth was introduced to the network; this value
was processed by a small dense layer (16 neurons);

m adding the variable ,rainfall” — analysis of the heat maps
of humidity and surface temperature (Figure 3) showed that the

July decline in tempe- a

rature was the result
of intense rainfall; in-
cluding rainfall as
a predictor allowed
better reproduction of
this phenomenon;

m integration of
two information stre-
ams — after proces-
sing the sequence
through the LSTM
layer (256 neurons)
and batch normalisa-
tion and processing
depth, both streams
were concatenated
and then passed to
subsequent dense lay-
ers (128 and 1 neu-
ron).

In total, the model
contained 304 417

) A Hour/Godzina

Fig. 2. Comparison of the predicted temperature at different depth with the temperature
read from the monitoring system for the E_XGBoost model

Rys. 2. Porownanie prognozowanej temperatury na poszczegolnych glebokosciach wzgledem
temperatury odczytanej z systemu monitoringu dla modelu E_XGBoost

staly zlokalizowane.
Ze wzgledu na tabli-
cowa strukture model
nie jest w stanie jaw-
nie przetworzy¢ struk-
tury sekwencji, czyli
nie potrafi rozr6znic,
czy kolejne dane w cza-
sie sa losowe, czy tez
zaleza od cech wej-
sciowych. W zwiaz-
ku z tym podjeto ko-
lejng probg budowy
eksperymentalnego
modelu bazujacego
tym razem na modelu
RNN, o architekturze
warstw jak w MO-
DELI i oznaczono go
jako E_MODELI.
W  modelu tym
uwzgledniono imple-
mentacj¢ dodatkowe-
go kanatu w postaci

opadow deszczu oraz glgbokosé. Obie zmienne wymagaty
normalizacji. Przygotowanie modelu obejmowato:

m wprowadzenie predyktora ,,glgboko$¢” — oprocz sekwen-
¢ji temperatury powierzchni i wilgotnosci, do sieci wprowa-
dzono wejscie reprezentujace gtgbokos¢; wartosc ta byta prze-
twarzana przez niewielka warstwe ggsta (16 neuronow);

m dodanie zmiennej ,,opad” — analiza heatmapy wilgotno-
$ci 1 temperatury powierzchni (rysunek 3) wykazata, ze lip-
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Fig. 3. Heatmap of environmental variables: humidity (a) and surface temperatu-
re (b)

parameters, of which Rys. 3. Heatmapa zmiennych srodowiskowych: wilgotnosci (a) oraz temperatury na
303 905 were train- powierzchni (b)
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cowy spadek tempera-
tury byt wynikiem in-
tensywnych opadow;
ujecie opadow jako
predyktora pozwolito
na lepsze odwzorowa-
nie tego zjawiska;

m integracj¢ dwoch
strumieni informacji
— po przej$ciu sek-
Wwencji przez warstwe
LSTM (256 neuro-
now) i batchnormali-
zation oraz przetwo-
rzeniu glgbokosci oba
strumienie taczono za
pomoca concatenate
(), a nastgpnie przeka-
zywano do kolejnych
warstw gestych (128
i 1 neuron).

Lacznie model za-
wierat 304 417 pa-
rametrow, z czego
303 905 ulegato aktu-
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able. Training was carried out with early stopping, just as in
MODELI.

The quality of fit in the form of selected metrics of the
E MODELI model, after including rainfall, amounted on
average to: RMSE =3.16°C, MAE =2.18°C, MAPE = 14.5%,
R? = 0.855. The fit metrics therefore did not indicate an
improvement in effectiveness compared with MODEL1, but
the inclusion of an additional factor in the form of rainfall and
depth eliminated the observed anomaly in the July period and
made it possible to predict the temperature between the
sensors. Moreover, when observing the fit results (Figure 4),
it can be assumed that the obtained fit constitutes an averaging
of the results of temperature variation with respect to all
depths, with slight correction resulting from the adoption of
the normalised depth variable for training the RNN model. It
should also be noted that the trend of temperature variation
captured by the RNN model was reproduced satisfactorily
well. The largest individual anomalies of temperature
prediction appear in the period when the data were incorrectly
processed by the sensor.

In summary, in order to correctly perform temperature
interpolation at a high level of precision, it is necessary in the
future to apply a hybrid network consisting of an RNN and
XGBoost. In this way, a model architecture will be created in
which time-series data are first processed by a recurrent
network (RNN, e.g., LSTM), and the results (e.g., sequence
representations) are passed as features to an XGBoost model.
As a result, the RNN network will process successive
sequences (e.g., 24 hours of humidity, temperature), generating
a representation matrix (embedding). Next, the XGBoost
technique, using the representation matrix, will be trained on
static features such as pavement depth or time of day.

depth: 10 cm/glgbokosé: 10 cm
RMSE =2,84MAE = 1,90 MAPE = 13,5%|R?>= 0,89

Temperature [°]/Temperatura [°C]

depth: 2 cm/glgbokosé: 2 cm
RMSE =4,64MAE = 3,38 MAPE = 19,8%|R* = 0,30

Temperature [°]/Temperatura [°C]

alizacji. Trening przeprowadzono z wczesnym zatrzymaniem,
tak jak w MODELI.

Jakos¢ dopasowania w postaci wybranych metryk modelu
E MODELI, po uwzglgdnieniu opadéw deszczu wyniosta $red-
nio: RMSE = 3,16°C, MAE = 2,18°C, MAPE = 14,5%
R? = 0,855. Metryki dopasowania nie wskazywaty zatem
na poprawe skutecznos$ci w poréwnaniu do MODELI, ale
uwzglednienie dodatkowego czynnika w postaci opadow desz-
czu oraz gigbokosci wyeliminowalo zaobserwowana anoma-
lig w okresie lipca 1 umozliwito predykcjg temperatury pomig-
dzy czujnikami. Ponadto, obserwujac wyniki dopasowania
(rysunek 4), mozna przypuszczac, ze uzyskane dopasowanie
stanowi usrednienie wynikow zmiany temperatury wzgledem
wszystkich glgbokosci z niewielka korekta wynikajaca z przy-
jecia zmiennej w postaci znormalizowanej glgbokosci ucze-
nia sieci RNN. Nalezy réwniez nadmienic¢, ze trend zmiany
temperatury ujety przez model sieci RNN zostat odwzorowa-
ny satysfakcjonujaco dobrze. Najwigksze, pojedyncze anoma-
lie prognozy temperatury pojawiaja si¢ w okresie, kiedy da-
ne byly niewlasciwie przetwarzane przez czujnik

Podsumowujac, aby poprawnie dokonac interpolacji tempe-
ratury na wysokim poziomie precyzji, nalezy w przysztosci za-
stosowac sie¢ hybrydowa sktadajaca sig z sieci RNN i XGBo-
ost. W ten sposdb powstanie architektura modelu, w ktorym
dane czasowe sa najpierw przetwarzane przez sie¢ rekurencyj-
na (RNN, np. LSTM), a wyniki (np. reprezentacje sekwencji)
przekazywane jako cechy do modelu XGBoost. W efekcie sie¢
RNN bedzie przetwarzaé kolejne sekwencje (np. 24 godziny
wilgotno$ci, temp.), generujac macierz reprezentacji (embed-
ding). Nastepnie technika XGBoost, wykorzystujac macierz re-
prezentacji, bedzie trenowana na cechach statycznych, takich
jak: glebokos¢ nawierzchni czy pora dnia. W efekcie sie¢ RNN

depth: 16 cm/glgbokosé: 16 cm
RMSE =2,57]MAE = 1,70]MAPE = 12,7%|R?= 0,89

Temperature [°]/Temperatura [°C]

depth: 22cm/glebokosé: 22 cm
RMSE =2,50MAE = 1,65[MAPE = 11,7%|R> = 0,89

Temperature [°]/Temperatura [°C]

depth: 6 cm/glebokosé: 6 cm
RMSE = 3,25|MAE = 2,26]MAPE = 14,7%|R?>= 0,87

Temperature [°]/Temperatura [°C]
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Date/Data

blue line: measured; red points: predicted/
niebieska linia — warto$¢ zmierzona;
czerwone punkty — warto§¢ przewidywana

Date/Data

Fig. 4. Comparison of temperature prediction results generated by the E. MODEL1 model with experimental results
Rys. 4. Porownanie wynikow predykcji temperatury wygenerowanej przez model typu E MODEL1 z wynikami eksperymentalnymi
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Consequently, the RNN network will make it possible to
capture temporal patterns present in the dataset, and the
XGBoost model will provide high effectiveness and control of
static features.

Discussion of the effectiveness
of the adopted models

The conducted studies confirmed that data-driven methods
enable reliable prediction of the temperature distribution within
the asphalt pavement profile in the case of h > 0. In the group
of sequence models, the bidirectional architecture MODEL3
(BILSTM) proved to be the reference variant: on the test
dataset it faithfully reproduced the diurnal cycle and the
seasonal trend, achieving average RMSE = 2.91°C and
R?=0.88, with the best fit occurring in the intermediate layers
(from 6 to 16 cm). The maximum estimation error was 3.28°C,
which confirms the usefulness of MODELS3 in an application
requiring high temporal fidelity. The initial baseline variants
(MODEL1 and MODEL2) justified the choice of the
sequential approach, although in terms of compromise between
complexity and quality, MODEL3 provided the most stable
results.

The table-based XGBoost model constituted a fast and
interpretable alternative. The introduction of the depth variable
was of key significance: the experimental variant E__XGBoost
enabled continuous interpolation at depths h >0 cm with a very
small error RMSE=0.97°C, R? = 0.988 (Table 7), reproducing
the realistic modulation of amplitude with depth. Such a tem-
perature profile is particularly valuable in FWD/TSD norma-
lisation procedures when no direct temperature measurement
is available in the pavement layer at the required depth.

In turn, E MODEL1 (RNN extended with depth and
rainfall) improved resistance to weather episodes and enabled
interpolation between sensors, but did not produce a clear
increase in basic metrics compared with the baseline MODEL1
(RMSE =3.16°C, R?=0.86). This result suggests (Table 7) that
explicit conditioning on depth in the tree-based model is more
effective for profile reconstruction than an analogous extension
in the RNN when the sequence window is short.

From a practical viewpoint, it is recommended to choose
MODELS3 for tasks requiring the highest possible temporal
fidelity (e.g., tracking diurnal and seasonal variations), and
E_XGBoost wherever speed, ease of integration and reliable
interpolation of the profile from 0 to 22 ¢cm are important for
temperature correction. A natural direction for further work
is a hybrid model RNN—XGBoost, in which sequence
representations (embeddings) generated by the BiLSTM
network feed a boosting model processing static features
(depth, time of day). At the same time, cross-location

pozwoli na wylapanie wzorcow czasowych istniejacych
w zbiorze, a model XGBoost zapewni duza skuteczno$¢ i kon-
trolg cech statycznych.

Dyskusja skutecznosci przyjetych modeli

Przeprowadzone badania potwierdzity, ze metody typu da-
ta-driven pozwalaja wiarygodnie prognozowac rozktad tem-
peratury w profilu nawierzchni asfaltowej w przypadku h > 0.
W grupie modeli sekwencyjnych architektura dwukierunko-
wa MODEL3 (BiLSTM) okazata si¢ wariantem referencyj-
nym: na zbiorze testowym wiernie odwzorowata cykl dobo-
wy i trend sezonowy, osiagajac usrednione RMSE = 2,91°C
1R?=0,88, z najlepszym dopasowaniem w warstwach posred-
nich (od 6 do 16 cm). Maksymalny blad estymacji wyniost
3,28°C, co potwierdza przydatno§¢ MODEL3 w zastosowaniu
wymagajacym duzej wiernosci czasowej. Wstgpne warianty ba-
zowe (MODEL1 i MODEL2) uzasadnily wybor podejscia se-
kwencyjnego, jednak z punktu widzenia kompromisu migdzy
ztozonos$cia a jakoscig to MODEL3 zapewnial najbardziej
stabilne wyniki.

Model tablicowy typu XGBoost stanowit szybka i interpre-
towalna alternatywe. Kluczowe znaczenie miato wprowadze-
nie informacji o glgbokosci: wariant eksperymentalny
E_XGBoost umozliwil ciagla interpolacj¢ na glebokosci
h > 0 cm z bardzo matym btgdem RMSE = 0,97°C, R>~ 0,988
(tabela 7), odtwarzajac realistyczna modulacj¢ amplitudy wraz
z glebokoscia. Taki profil temperaturowy jest szczeg6lnie cen-
ny w procedurach normalizacji ugie¢c FWD/TSD, gdy brak jest
bezposredniego pomiaru temperatury w warstwie konstrukcji
nawierzchni na wymaganej gigbokosci.

Z kolei E MODEL1 (RNN rozszerzony o giebokos$é¢
i opad) poprawit odporno$¢ na epizody pogodowe oraz
umozliwil interpolacj¢ migdzy czujnikami, nie przynoszac
jednak wyraznego wzrostu podstawowych metryk wzgledem
bazowego MODEL1 (RMSE = 3,16°C, R? = 0,86). Wynik
ten sugeruje (tabela 7), ze eksplicytne uwarunkowanie po
glebokosci w modelu drzewiastym jest bardziej efektywne
w przypadku rekonstrukcji profilu niz analogiczne rozsze-
rzenie w RNN przy krotkim oknie sekwencji.

Z praktycznego punktu widzenia rekomenduje si¢ dobor
modelu MODEL3 w zadaniach wymagajacych mozliwie naj-
wyzszej wiernosci czasowej (np. $ledzenie zmian dobowych
isezonowych), oraz E_XGBoost wszedzie tam, gdzie licza si¢
szybko$¢, prostota integracji i wiarygodna interpolacja pro-
filu od 0 cm do 22 c¢m na potrzeby korekcji temperaturowe;j.
Naturalnym kierunkiem dalszych prac jest model hybry-
dowy RNN—XGBoost, w ktérym reprezentacje sekwencji
(embeddingi) wytwarzane przez sie¢ BiLSTM zasilaja model
boostingowy przetwarzajacy cechy statyczne (glgbokosc, po-

Table 7. Summary of average fit metrics (relative to specified depths) obtained for the tested models
Tabela 7. Podsumowanie Srednich wartosci metryk dopasowania (wzgledem zadanych glebokosci) uzyskane w przypadku testowanych modeli

MODEL 3 E_XGBoost E_MODELI

RMSE [°C] MAE[°C] MAPE[%] R RMSE[°C] MAE[°C|] MAPE[%] R* RMSE[°C] MAE[°C|] MAPE[%] R

291 1,74 12,69 088 0,97 0,67 451 0,99 3,16 2,18 145 0,86
12/2025 (nr 640)
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validation (different climates and structural configurations)
and analysis of metric stability over longer time horizons are
recommended, which will determine the target scalability of the
solution in network-level practice.

The juxtaposition of results indicates clear differences
between model classes:

e accuracy — in prediction at given points (2 to 22 cm)
MODELS3 turned out to be the best, but E_ XGBoost achieved
even better results due to the introduction of the depth variable
and time encoding;

e training and implementation — E_XGBoost trains much
faster, requiring only preparation of a table with lags and time
encoding. RNNs require sequential data structure, have higher
computational demands and are more sensitive to gaps in time
series;

e interpretability — E_XGBoost allows assessing the
importance of individual variables, whereas RNNs are less
transparent. Importance coefficients can help identify key
meteorological and technological factors;

e interpolation — E_XGBoost performs excellently in
interpolating temperature between sensors. Use of RNNs in the
E_MODELI variant enables interpolation, but with a larger
approximation error.

Conclusions

The analysis showed that recurrent and gradient-boosted
models exhibit different strengths: RNNs better reproduce
complex temporal dynamics, whereas XGBoost provides
speed, interpretability and ease of implementation. The article
proposes the concept of a hybrid model combining both
techniques —an RNN would generate sequence representations
(so-called embeddings), and XGBoost would use them as input
features. Such a model could take advantage of the ability of
RNNS to capture temporal patterns and of the effectiveness of
XGBoost in processing static features, such as depth or time
of day. In addition, a hybrid model could successfully
incorporate meteorological and engineering predictors (e.g.,
mix composition, layer thickness) as additional inputs, which
would increase its universality and adaptability to different
locations. Developing this concept constitutes a natural
direction for further work.

The results indicate that MODELS3 — the bidirectional LSTM
network — achieved the best results among sequence models.
Inturn, E. MODEL1 showed that adding predictors in the form
of depth and rainfall makes it possible to reduce the influence
of temperature anomalies and enables interpolation of
temperature with respect to depth. The calculated RMSE
indicates that for depths of 22 and 16 cm the model is
statistically unbiased (ME = 0), whereas closer to the
surface positive prediction errors appear due to greater
thermal non-stationarity. In this situation it is necessary to
take into account factors related to the thermal
conductivity of individual layers.

Very good results were demonstrated by the experimental
model E_XGBoost, which was built for prediction and
interpolation of temperature at depths up to 22 cm. Thanks to

ra doby). Jednoczesnie wskazana jest walidacja migdzyloka-
lizacyjna (odmienne klimaty i konstrukcje) oraz analiza stabil-
nosci metryk w dhuzszych horyzontach czasowych, co przesadzi
o docelowe;j skalowalnosci rozwiazania w praktyce sieciowe;.

Zestawienie wynikow wskazuje na wyrazne réznice mie-
dzy klasami modeli:

e doktadnos¢ — w prognozie na danych punktach (od 2
do 22 cm) najlepszy okazal si¢ MODEL3, lecz E_ XGBoost
osiagnat jeszcze lepsze wyniki dzigki wprowadzeniu zmien-
nej glebokosci i kodowaniu czasu;

e trening i implementacja— E_XGBoost trenuje si¢ znacz-
nie szybciej, wymaga jedynie przygotowania tablicy z laga-
mi i kodowaniem czasu. RNN potrzebuja sekwencyjnej struk-
tury danych, maja duze wymagania obliczeniowe i sa bardziej
wrazliwe na braki w szeregach czasowych;

e interpretowalnos¢ — E__XGBoost pozwala na oceng waz-
nosci poszczegdlnych zmiennych, natomiast RNN sa mniej
transparentne. Wspotczynniki waznosci moga pomdc w iden-
tyfikacji kluczowych czynnikéw meteorologicznych i techno-
logicznych;

e interpolacja — E_ XGBoost radzi sobie znakomicie z in-
terpolacja temperatury pomig¢dzy czujnikami. Wykorzystanie
sieci RNN w wariancie E MODEL1 umozliwia interpolacje,
lecz przy wigkszym btgdzie aproksymacji.

Whnioski

Analiza wykazata, ze modele rekurencyjne i gradientowe wy-
kazuja rézne mocne strony: RNN lepiej odwzorowuja ztozong
dynamike czasowa, zas§ XGBoost zapewnia szybkos¢, interpre-
towalnos¢ i tatwo$¢ implementacji. W artykule zaproponowano
koncepcje modelu hybrydowego taczacego obie techniki — RNN
generowaltby reprezentacje sekwencji (tzw. embeddingi),
a XGBoost wykorzystywat je jako cechy wejsciowe. Taki mo-
del moglby korzysta¢ z mozliwosci RNN w wychwytywaniu
wzorcow temporalnych oraz z efektywnosci XGBoost w prze-
twarzaniu cech statycznych, takich jak glteboko$¢ czy pora dnia.
Ponadto model hybrydowy z powodzeniem mogtby uwzgledniaé
predyktory meteorologiczne i inzynierskie (np. sktad mieszanki,
grubos¢ warstw) jako dodatkowe wejscia, co zwigkszytoby uni-
wersalno$¢ i adaptowalnos¢ do roznych lokalizacji. Rozwinigcie
tej koncepcji stanowi naturalny kierunek dalszych prac.

Wyniki wskazuja, ze MODEL3 — dwukierunkowa sie¢
LSTM — osiagnal najlepsze wyniki wéréd modeli sekwencyj-
nych. Z kolei E MODEL1 wykazal, ze dodanie predyktora
w postaci glgbokosci i opadow pozwala na ograniczenie wply-
wu anomalii temperaturowych oraz umozliwia interpolacj¢
temperatury wzgledem glgbokosci. Obliczony RMSE wskazu-
je, ze w przypadku glebokosci 22 i 16 cm model jest staty-
stycznie nieobciazony (ME = 0), natomiast bliZzej powierzch-
ni wystepuja pozytywne prognozy wynikajace z wigkszej
niestacjonarnosci cieplnej. W tej sytuacji konieczne jest
uwzglednienie czynnikow zwiazanych z przewodnos$cia
cieplng poszczegolnych warstw.

Bardzo dobre rezultaty wykazal eksperymentalny model
E_XGBoost, ktory zostal zbudowany do prognozy i interpo-
lacji temperatury na glgbokos$ci do 22 cm. Dzigki zastosowa-
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the use of the time variable and the 3-hour measurement
interval of humidity and surface temperature, a model capable
of predicting temperature in the pavement profile across the
entire domain of the experiment was obtained.

Recommendations for use in engineering practice:

m model selection — where the highest forecast accuracy is
required and appropriate computational infrastructure is
available, MODEL3 is recommended. It provides high
precision and is able to reproduce both diurnal and seasonal
temperature fluctuations. In projects requiring rapid updating
or operation on devices with limited computing power,
E_XGBoost is a better choice — the model learns quickly and
offers the highest interpolation accuracy;

m maintenance applications data-driven models can support
FWD/TSD deflection normalisation in real time based on
available surface temperature measurements. Winter
applications require separate validation on datasets covering
the freezing period.

Directions for further research:

e development of a hybrid RNN-XGBoost model — the aim
of further studies should be the design and testing of a model
that combines sequential RNN processing with the decision
function of XGBoost; such a hybrid could improve forecast
accuracy while maintaining interpretability and operational
speed;

e validation on other sections and in different climatic
conditions — most existing studies have been conducted at a
single measurement site; it is necessary to collect data from
regions with different climatic conditions (e.g., mountainous,
coastal areas) and verify how the models scale to new
locations; re-tuning of parameters or the use of transfer
learning may be required;

e physical use of physics-informed neural networks (PINN)
— combining heat-conduction equations with machine learning
may further improve the reproduction of physical processes
and allow simultaneous estimation of material properties.
Conducting PINN research in the context of road pavements
may open new perspectives.

Analysis of the fit-quality metrics confirms that prediction
bias increases closer to the surface, which has physical
justification — the shallower layers display greater radiative
amplitude and shorter thermal delay, and a model trained on
3-hour sequences does not fully account for this effect.
Further research is planned with an extended sequence
window and inclusion of solar radiation as a predictor.
Moreover, the dataset does not include the winter period.
Observing the promising results, the E XGBoost model will
be supplemented in the near future with additional datasets
from that season of the year.

The article carried out analyses comparing RNN with
gradient boosting (XGBoost), which showed that RNNs better
capture nonlinear relationships and temporal dependencies,
although their training is longer and they require larger
datasets. In turn, XGBoost is faster and easier to interpret, but
for sequence processing it requires additional data in the form
of artificial delays. The presented conclusions and
recommendations indicate the significant potential of machine
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niu zmiennej czasowej oraz 3 h interwatlu pomiaru wilgotno-
$ci i temperatury powierzchni uzyskano model zdolny do pro-
gnozowania temperatury w przekroju nawierzchni w calym
zakresie dziedziny eksperymentu.

Rekomendacje do stosowania w praktyce inzynierskiej:

m wybor modelu — tam, gdzie najwazniejsza jest doktad-
no$¢ prognozy i dostgpna jest odpowiednia infrastruktura ob-
liczeniowa, rekomenduje si¢ uzycie MODEL3. Zapewnia on
duza precyzjg i jest w stanie odwzorowa¢ zarowno dobowe,
jak i sezonowe wahania temperatury. W projektach wymaga-
jacych szybkiej aktualizacji lub pracy na urzadzeniach o ogra-
niczonej mocy obliczeniowe] lepszym wyborem bedzie
E_XGBoost — model szybko si¢ uczy i oferuje najwyzsza do-
ktadno$¢ interpolacji;

m w zastosowaniach utrzymaniowych modele data-driven
moga wspiera¢ normalizacje¢ ugie¢ FWD/TSD w czasie rze-
czywistym na podstawie dostgpnego pomiaru temperatury
powierzchni. Zastosowania zimowe wymagaja osobnej wali-
dacji na zbiorach obejmujacych porg mrozna.

Kierunki dalszych badan:

e rozwo0j hybrydowego modelu RNN-XGBoost — celem
dalszych badan powinno by¢ zaprojektowanie i przetestowa-
nie modelu, ktory polaczy sekwencyjne przetwarzanie RNN
z funkcja decyzyjna XGBoost, taka hybryda mogtaby popra-
wi¢ doktadno$¢ prognozy, a jednoczesnie zachowac interpre-
towalnosc 1 szybkos¢ dziatania,

e walidacja na innych odcinkach i w roznych warunkach
klimatycznych — wigkszos$¢ dotychczasowych badan byta pro-
wadzona na jednym stanowisku pomiarowym, nalezy zebra¢
dane z innych regionéw o odmiennych warunkach klimatycz-
nych (np. tereny gorskie, nadmorskie) i sprawdzic¢, jak mode-
le skaluja si¢ w nowej lokalizacji; konieczne moze by¢ ponow-
ne strojenie parametrow lub zastosowanie transfer learningu;

e fizyczne wykorzystanie informowanych sieci neurono-
wych (PINN) — polaczenie rownan przewodnictwa cieplnego
Z uczeniem maszynowym moze jeszcze lepiej odwzorowaé
procesy fizyczne i umozliwi¢ jednoczesne szacowanie wiasci-
wosci materialowych. Przeprowadzenie badan nad PINN
w konteksécie nawierzchni drogowych moze otworzy¢ nowe
perspektywy.

Analiza metryk jakosci dopasowania potwierdza, ze obcia-
zenie prognoz zwigksza si¢ blizej powierzchni, co ma uzasad-
nienie fizyczne — w plytszych warstwach wystgpuje wigksza
amplituda radiacyjna i krotsze opdznienie cieplne, a model
uczony na sekwencjach 3 h nie uwzglednia w pehni tego efek-
tu. Dalsze badania planuje si¢ z wydluzonym oknem sekwen-
cji 1 uwzglednieniem nastonecznienia jako predyktora. Ponad-
to zbidr danych nie obejmuje okresu zimowego. Obserwujac
obiecujace rezultaty, model E_XGBoost zostanie w najblizszej
przysztosci wsparty dodatkowymi zbiorami danych z tego okre-
su pory roku.

W artykule przeprowadzono analizy poréwnujace RNN
z gradientowym boostingiem (XGBoost), ktore wykazaty, ze
RNN lepiej uchwytuja nieliniowe relacje i zalezno$ci czaso-
we, mimo ze ich trening jest dtuzszy i wymagaja wigkszego
zbioru danych. Z kolei XGBoost jest szybszy i tatwiejszy
w interpretacji, lecz do przetwarzania sekwencji wymaga do-
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learning in predicting temperature within the pavement layer
system and its importance for diagnostics and maintenance of
road infrastructure. Further research should focus on
hybridisation of methods, expansion of the data base and
integration of models with traffic and weather management
systems.
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datkowych danych w postaci sztucznych opdznien. Przedsta-
wione wnioski i rekomendacje $wiadcza o duzym potencjale
uczenia maszynowego w prognozowaniu temperatury w prze-
kroju warstw nawierzchni i jego znaczeniu dla diagnostyki
oraz utrzymania infrastruktury drogowej. Dalsze prace ba-
dawcze powinny koncentrowaé si¢ na hybrydyzacji metod,
rozszerzeniu bazy danych i integracji modeli z systemami za-
rzadzania ruchem i pogoda.
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