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Elewacje pełnią kluczową rolę w budowaniu estetyki 
i funkcjonalności współczesnych obiektów. Kształ-
tują wizualny charakter budynku, nadają mu indy-
widualny styl i  stają się znakiem rozpoznawczym 

w  przestrzeni miejskiej. Dynamiczny rozwój technologii 
budowlanych oraz pojawienie się innowacyjnych materia-
łów sprawiają, że projektowanie ścian osłonowych nabiera 
coraz większego znaczenia, zarówno w aspekcie technicz-
nym, jak i  architektonicznym [1,  2]. Współczesne ściany 
osłonowe są konstrukcjami o  wielofunkcyjnym charakte-
rze, łączącymi wymagania użytkowe, estetyczne, energo-
oszczędne i  ekologiczne. Odpowiednio zaprojektowane 
wpływają na komfort użytkowników, ograniczają straty 
energii, poprawiają akustykę pomieszczeń, a także podno-
szą prestiż budynku [3, 4]. 
Proces realizacji inwestycji budowlanej wymaga zachowa-

nia równowagi pomiędzy trzema kluczowymi wartościami: 
czasem, kosztem i  jakością [5]. Poprawne zarządzanie tymi 
parametrami pozwala inwestorowi osiągnąć zakładane cele 
przy minimalizacji ryzyka technicznego i  finansowego [6]. 
Co więcej, zmiany na etapie projektowania lub wykonawstwa 
wpływają na przebieg harmonogramu oraz koszty, dlatego 
niezbędne staje się precyzyjne planowanie oraz nadzór nad 

Streszczenie. Oceniono znaczenie zmiennych wejściowych 
w modelu sztucznej sieci neuronowej (SSN) prognozującej kosz-
ty ścian osłonowych. Analizę przeprowadzono na podstawie 209 
dokumentacji kontraktowych budynków użyteczności publicznej 
zlokalizowanych w centralnej i południowej Polsce. Spośród 28 zi-
dentyfikowanych czynników, po selekcji wykorzystano 24 zmien-
ne opisujące parametry techniczne obiektów i rodzaje materiałów 
elewacyjnych do budowy modelu sztucznej sieci neuronowej. 
Globalna analiza wrażliwości modelu SSN wykazała, że kluczo-
wym czynnikiem determinującym koszty systemów fasadowych 
jest powierzchnia elewacji. Ze względu na niski poziom istotności 
pozostałych zmiennych przeprowadzono selekcje zmiennych wej-
ściowych modelu sztucznej sieci neuronowej, gdzie w przypadku 
16 zmiennych wejściowych jakość modelu pozostała na porów-
nywalnym poziomie jak w  przypadku 24 zmiennych. Ponadto 
wykonano symulację wpływu najistotniejszych zmiennych na 
model SSN. Badania potwierdzają, że SSN prawidłowo reaguje 
na zmianę zmiennych wejściowych i stanowi skuteczne narzędzie 
prognozowania kosztów systemów elewacyjnych.
Słowa kluczowe: systemy elewacyjne; analiza wrażliwości; mo-
del SSN; predykcja kosztów.

Abstract. Assess the importance of input variables in an artificial 
neural network (ANN) model designed to predict the costs of 
curtain walls. The analysis was carried out on the basis of 209 
contract documents of public utility buildings located in central 
and southern Poland. Out of 28 initially identified factors, 24 
variables describing the technical parameters of the buildings and 
the types of facade materials were selected for the construction 
of the ANN model. The global sensitivity analysis of the model 
revealed that the most critical cost-determining factor for facade 
systems is the facade area. Due to the low significance levels of 
other variables, input variable selection was conducted, showing 
that a  reduced model with 16 variables retained a  quality 
comparable to that of the full 24-variable model. In addition, 
a  simulation was carried out to assess the impact of the most 
significant variables on the SSN model. The results confirm that 
the SSN responds appropriately to changes in the input variables 
and further serves as an effective tool for predicting the costs of 
façade systems.

Keywords: facade systems; sensitivity analysis; artificial neural 
network (ANN); cost prediction.
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Façades play a fundamental role in shaping the aesthetic 
and functional performance of contemporary buildings. 
They define the visual identity of a  structure, impart-
ing a  distinctive architectural character and serving as 

a recognizable element within the urban environment. The rapid 
advancement of construction technologies, together with the in-
troduction of innovative materials, has elevated the importance of 
curtain wall design, both in technical terms and within the broader 
architectural context [1, 2]. Contemporary curtain wall systems 
are multifunctional structural assemblies that integrate usabili-
ty, aesthetic, energy-efficient, and environmental requirements. 
When properly designed, they enhance user comfort, reduce en-
ergy losses, improve the acoustic performance of interior spaces, 
and contribute to the overall prestige of the building [3, 4]. 
The execution of a  construction investment requires ma-

intaining a balance among three key factors: time, cost, and 
quality [5]. Effective management of these parameters ena-
bles the investor to achieve the intended project objectives 
while minimizing technical and financial risks [6]. Moreover, 
modifications introduced during the design or construction 
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stages affect both the schedule and overall expenditures, ma-
king precise planning and continuous supervision of the im-
plementation process essential [7]. Every construction project 
is inherently associated with costs, and their proper planning 
and control are critical determinants of project success [8, 9]. 
In the case of curtain wall systems, investor decision-making 
becomes particularly demanding. A properly conducted cost 
analysis is crucial at both the design and execution stages, as 
it allows for the establishment of an accurate project budget. 
Cost estimation for curtain wall systems encompasses a wide 
range of factors, including material prices, structural system 
selection, installation technologies, and labour time require-
ments [10]. For these reasons, the search for new methods 
and models of cost estimation – particularly those employing 
artificial intelligence – has become increasingly important.
The significance of the input variables in the proposed ar-

tificial neural network (ANN) model for forecasting curtain 
wall costs was evaluated. The study included a  global sen-
sitivity analysis of the model based on the degree of impor-
tance of the factors that exert the greatest influence on façade 
system costs. In addition, a variability analysis of the model 
was carried out to assess its response to changes in the most 
significant input variables.

Research subject
The traditional classification of external walls includes sin-

gle-, double-, and triple-layer constructions. The analysis fo-
cused on the solutions most commonly used in public utility 
buildings, namely glass-metal 
curtain walls and ventilated 
façade systems. The classifica-
tion of curtain wall systems is 
presented in figure 1.
Aluminium plays a dominant 

role in glass–metal façade sys-
tems. Aluminium profiles are 
characterized by high strength 
combined with low weight, 
corrosion resistance, flexibility 
in shaping cross-section geom-
etry, and excellent thermal insu-
lation performance. Moreover, 
their production is associated 
with reduced CO2 emissions, 
and the material itself is fully 
recyclable. For this reason, the 
study focused on façade sys-
tems in which the structural framework consists of aluminium 
profiles, while various types of glass serve as the infill.
Considering the type of system used, aluminium façades 

are classified into three main groups [11]: mullion–transom 
systems, structural systems, and semi-structural systems.
The second solution analysed in the study is the ventilated 

façade. Its construction comprises a substructure (supporting 
grid), a thermal insulation layer, an exterior cladding, and me-
chanical fasteners.

procesem realizacji [7]. Każde przedsięwzięcie budowlane 
jest nierozerwalnie związane z kosztami, a ich właściwe pla-
nowanie i kontrola determinują powodzenie całego projektu 
[8, 9]. W przypadku ścian osłonowych decyzje inwestorów 
są szczególnie wymagające. Prawidłowo przeprowadzona 
analiza kosztowa ma istotne znaczenie zarówno na etapie 
projektowania, jak i wykonawstwa. Umożliwia ona ustalenie 
budżetu przedsięwzięcia. W  przypadku ścian osłonowych, 
szacowanie kosztów obejmuje szeroki zakres czynników: 
od cen materiałów i  systemów konstrukcyjnych, przez czas 
i technologię montażu [10]. Z tego względu istotne staje się 
poszukiwanie nowych metod i modeli szacowania kosztów 
z wykorzystaniem np. sztucznej inteligencji.
Oceniono istotność zmiennych wejściowych zapropono-

wanego modelu sztucznej sieci neuronowej prognozowania 
kosztów ścian osłonowych. W badaniu przeprowadzono glo-
balną analizę wrażliwości modelu w  zależności od stopnia 
istotności czynników, które w największym stopniu wpływają 
na koszty systemów fasadowych. Dodatkowo wykonano ana-
lizę zmienności modelu, w zależności od zmiany najistotniej-
szych zmiennych wejściowych.

Przedmiot badań
Tradycyjny podział ścian zewnętrznych obejmuje kon-

strukcje jedno-, dwu- lub trójwarstwowe. Skoncentrowano 
się na rozwiązaniach najczęściej stosowanych w  obiektach 
użyteczności publicznej, czyli metalowo-szklanych oraz 
wentylowanych ścianach osłonowych. Podział ścian osłono-

wych przedstawia rysunek 1.
Dominującą rolę w elewa-

cjach szklano-metalowych 
odgrywa aluminium. Profile 
aluminiowe charakteryzują 
się dużą wytrzymałością przy 
niewielkiej masie, odporno-
ścią na korozję, możliwością 
dowolnego kształtowania 
geometrii przekrojów, a  tak-
że bardzo dobrymi parame-
trami izolacyjności termicz-
nej. Ponadto ich produkcja 
wiąże się z  obniżoną emisją 
CO2, a sam materiał w pełni 
podlega procesowi recyklin-
gu. Z  tego względu w bada-
niach skupiono się na syste-
mach fasadowych, w których 

konstrukcję stanowi szkielet aluminiowy, natomiast wypeł-
nienie szkło różnego rodzaju.
Biorąc pod uwagę rodzaj zastosowanego systemu, fasady 

aluminiowe dzielą się na trzy główne grupy [11]: słupowo-ry-
glowe; strukturalne; semistrukturalne.
Drugim analizowanym rozwiązaniem są elewacje wenty-

lowane. Ich konstrukcja obejmuje: podkonstrukcję (ruszt), 
warstwę termoizolacyjną, okładzinę elewacyjną oraz łączniki 
mechaniczne.
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Fig. 1. Classification of curtain walls [11]
Rys. 1. Podział ścian osłonowych [11]
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Research methodology
ANN Model. The first stage of the research involved 

identifying the factors influencing the cost of curtain wall 
systems during the conceptual design phase, based on the 
availability of fundamental structural data. This identifica-
tion was carried out through a review of the relevant liter-
ature as well as an analysis of 209 contract documentation 
sets. A  detailed description of the factors is provided in 
[12]. The initial database 
consisted of 28 variables in-
fluencing the cost of façade 
systems. Based on the 
Spearman rank correlation 
analysis, four variables 
were excluded:

●● type of façade under 
analysis – simple (X10);

●● type of aluminium–glass 
façade – with specified fire 
resistance (X15);

●● type of glazing – transpa-
rent insulating glass unit 
(X18);

●● type of window and door 
joinery – fire-rated doors 
(X26).
These variables showed 

either no correlation with 
the dependent variable (Y) 
or a  strong correlation with 
other independent variables. 
Table 1 presents the input 
variables used in the pro-
posed artificial neural net-
work model along with their 
corresponding symbols.
The next stage of the anal-

ysis involved developing 
the ANN model. A unidirec-
tional, multilayer perceptron 
(MLP) network was select-
ed, with the BFGS algorithm 
used for training. The data-
set was divided into 70% for 
training and 30% for valida-
tion and testing. The mini-
mum number of neurons in 
the hidden layer was set to 
6, and the maximum to 20. 
A fourfold random sampling 
strategy was applied for se-
lecting the training set. In 
each sampling iteration, 50 
networks were trained, and 
the five networks with the 
best training and testing per-
formance were retained. As 

Metodyka badań
Model SSN. Pierwszym etapem przeprowadzonych ba-

dań była identyfikacja czynników wpływających na koszt 
realizacji systemów fasadowych, na etapie przygotowania 
koncepcji projektowej, przy znajomości podstawowych da-
nych konstrukcyjnych. Dokonano jej na podstawie studium 
literatury przedmiotu, a  także analizy 209 dokumentacji 
kontraktowych. Dokładany opis czynników przedstawiono 

w [12]. Początkowa baza da-
nych składała się z 28 zmien-
nych kształtujących koszty 
systemów elewacyjnych. Na 
podstawie przeprowadzonej 
analizy korelacji rang Spe-
armana wykluczono cztery 
zmienne:

●● rodzaj analizowanej 
elewacji – prosta (X10);

●● rodzaj fasady aluminio-
wo-szklanej – o danej odpor-
ności ogniowej (X15);

●● rodzaj zastosowanego 
szkła – przezierne zespolone 
(X18);

●● rodzaj stolarki otworo-
wej – drzwi ogniowe (X26).
Zmienne te charakteryzo-

wały się brakiem korelacji 
z  zmienną zależną (Y) lub 
silną korelacją z  pozostały-
mi zmiennymi niezależnymi. 
W tabeli 1 zestawiono zmien-
ne wejściowe wykorzystane 
w  zaproponowanym modelu 
sztucznej sieci neuronowej 
wraz z  odpowiadającymi im 
symbolami.
Kolejny etap analizy to 

budowa modelu SSN. Wy-
brano sieć jednokierunkową, 
wielowarstwową MLP, gdzie 
algorytm uczący to BFGS. 
Przyjęto rozkład zmiennych 
w stosunku 70% (zbiór uczą-
cy) i 30% (zbiór walidacyjny 
i  testowy). Minimalna liczba 
neuronów w  warstwie ukry-
tej została określona jako 6, 
a  maksymalna – 20. Przyję-
to strategię losowania zbio-
ru uczącego czterokrotnie. 
W  każdym losowaniu uczo-
no 50 sieci i  zapisywano 5 
o  najlepszej jakości uczenia 
i  testowania. W  efekcie wy-
typowano sieć o  strukturze 
MLP 24-2-1 i  funkcjach ak-

Table 1. Set of input variables of the ANN model
Tabela 1. Zbiór zmiennych wejściowych modelu SSN

Variable / Zmienne wejściowe Symbol /
Oznaczenie

Location / Lokalizacja X1

Type of public utility building /  
Rodzaj budynku użyteczności publicznej X2

Building form (shape) / Bryła budynku X3

Building height / Wysokość budynku X4

Building length / Długość budynku X5

Building width / Szerokość budynku X6

Number of storeys / Liczba kondygnacji X7

Area of the analysed façade /  
Powierzchnia analizowanej elewacji X8

Complexity level of façade execution / 
Poziom skomplikowania wykonania elewacji X9

Type of façade analysed – curved / 
Rodzaj analizowanej elewacji – łukowa X11

Type of façade analysed – inclined  / 
Rodzaj analizowanej elewacji – pochyła X12

Type of aluminium–glass façade – mullion–transom 
system / Rodzaj fasady aluminiowo-szklanej – 
słupowo-ryglowa

X13

Type of aluminium–glass façade – semi-structural 
system / Rodzaj fasady aluminiowo-szklanej – 
półstrukturalna

X14

Type of glazing – fire-resistant glass /  
Rodzaj zastosowanego szkła – ogniowe X16

Type of glazing – opaque (non-transparent) glass /  
Rodzaj zastosowanego szkła – nieprzezierne X17

Type of ventilated façade cladding – composite panel /  
Rodzaj okładziny elewacji wentylowanej – płyta 
kompozytowa

X19

Type of ventilated façade cladding – sintered quartz 
panel / Rodzaj okładziny elewacji wentylowanej – 
spieki kwarcowe

X20

Type of ventilated façade cladding – HPL panel /  
Rodzaj okładziny elewacji wentylowanej – płyta HPL X21

Type of ventilated façade cladding – timber cladding / 
Rodzaj okładziny elewacji wentylowanej – okładzina 
drewniana

X22

Type of ventilated façade cladding – fibre-cement 
panel / Rodzaj okładziny elewacji wentylowanej – 
płyta włókno-cementowa

X23

Type of door joinery – hinged doors / Rodzaj stolarki 
otworowej – drzwi rozwierne X24

Type of door joinery – sliding doors / Rodzaj stolarki 
otworowej – drzwi przesuwne X25

Type of window joinery – tilt-and-turn windows (RU) 
/ Rodzaj stolarki otworowej – okna RU X27

Type of window joinery – structurally bonded 
windows / Rodzaj stolarki otworowej – okna klejone 
strukturalnie

X28
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a  result, a network with an MLP 24-2-1 architecture was 
identified, employing a  logistic activation function in the 
hidden layer and a hyperbolic tangent function in the out-
put layer. The Mean Absolute Percentage Error (MAPE) 
for the selected model was 10.91% for the training set 
and 11.53% for the test set. Additionally, the coefficient 
of determination R2 was cal-
culated at 0.97387 for the 
training set and 0.947726 
for the test set. The mini-
mum relative error in the 
test set for the MLP 24-2-1 
network was 0%, while the 
maximum was 43%.

Analysis of  
results
To assess the relevance and 

usefulness of the input vari-
ables in the artificial neural 
network model, a  sensitivity 
analysis was performed, en-
abling an evaluation of the 
influence of individual input 
variables (Xj) on the predicted 
value of the output variable 
(Y). The analysis examined 
the extent to which changes 
in input values produce fluc-
tuations in the model’s out-
put. By conducting a  global 
sensitivity analysis using the 
STATISTICA software, the 
variables were ranked ac-
cording to their impact on 
the prediction, and those that 
play a  key role in ensuring 
the reliability of the model’s 
forecasts were identified (ta-
ble 2).
The sensitivity analysis 

indicates that the most sig-
nificant variable in the ANN 
model is X8 – the area of the 
analysed façade. Due to the 
very low sensitivity of the 
output variable (Y) to the 
remaining independent var-
iables (Xj), an attempt was 
made to perform input var-
iable selection for the ANN 
model. For this purpose, 
a forward stepwise selection 
method was applied. The 
results are presented in fig-
ure 2.

tywacji: funkcja logistyczna w warstwie ukrytej oraz funkcja 
tangens hiperboliczny w warstwie wyjścia. Wyznaczono błąd 
prognozy MAPE (ang. Mean Absolute Percentage Error) wy-
noszący 10,91% w przypadku zbioru uczącego oraz 11,53% 
w  przypadku testowego. Dodatkowo obliczono współczyn-
nik determinacji R2, który wyniósł 0,97387 w  przypad-

ku zbioru uczącego, a  dla 
zbioru testowego 0,947726.  
Minimalny błąd względny 
zbioru testowego sieci MLP 
24-2-1 to 0%, a maksymalny 
43%.

Analiza wyników
W celu określenia znacze-

nia i  użyteczności zmien-
nych wejściowych w modelu 
sztucznej sieci neuronowej 
przeprowadzono analizę 
wrażliwości modelu umoż-
liwiającą ocenę wpływu 
poszczególnych zmiennych 
wejściowych (Xj) na war-
tość prognozowaną zmien-
nej wyjściowej (Y). Badano, 
w jakim stopniu zmiana war-
tości danych wejściowych 
powoduje wahania wyniku 
modelu. Dzięki globalnej 
wrażliwości modelu przepro-
wadzonej za pomocą progra-
mu STATISTICA uporządko-
wano zmienne pod względem 
ich wpływu na prognozę oraz 
wskazano te, które mają cha-
rakter kluczowy z  punktu 
widzenia wiarygodności pre-
dykcji (tabela 2).
Z przeprowadzonej analizy 

wrażliwości wynika, że naj- 
istotniejszą zmienną w przy-
padku modelu SSN jest 
zmienna X8 – powierzch-
nia analizowanej elewacji. 
Ze względu na bardzo małą 
wrażliwość zmiennej Y na 
pozostałe zmienne niezależ-
ne (Xj), podjęto próbę selek-
cji zmiennych wejściowych 
w modelu SSN. W  tym celu 
wykorzystano metodę se-
lekcji krokowej „w  przód”. 
Wyniki przedstawiono na ry-
sunku 2.
Wykonana analiza wraż-

liwości modelu umożliwi-

Table 2. Global Sensitivity Analysis for the ANN Model
Tabela 2. Analiza globalnej wrażliwości w przypadku modelu SSN

Input variables (Xj) / 
Zmienne wejściowe (Xj)

Degree of 
sensitivity of 
the output 
variable Y /  

Stopień 
wrażliwości 

zmiennej 
wyjściowej Y

X8 area of the analysed façade / powierzchnia 
analizowanej elewacji 56.978

X4 building height / wysokość budynku 2.571
X11 type of façade analysed – curved /  

rodzaj analizowanej elewacji – łukowa 2.520

X7 number of storeys / liczba kondygnacji 1.662
X16 type of glazing – fire-resistant glass /  

rodzaj zastosowanego szkła – ogniowe 1.601

X25 type of door joinery – sliding doors /  
rodzaj stolarki otworowej – drzwi przesuwne 1.496

X22 type of ventilated façade cladding – timber 
cladding / rodzaj okładziny elewacji 
wentylowanej – okładzina drewniana

1.388

X9 complexity level of façade execution /  
poziom skomplikowania wykonania elewacji 1.367

X19 type of ventilated façade cladding – composite 
panel / rodzaj okładziny elewacji wentylowanej 
– płyta kompozytowa

1.266

X12 type of façade analysed – inclined /  
rodzaj analizowanej elewacji – pochyła 1.178

X20 type of ventilated façade cladding – sintered 
quartz panel / rodzaj okładziny elewacji 
wentylowanej – spieki kwarcowe

1.141

X24 type of door joinery – hinged doors /  
rodzaj stolarki otworowej – drzwi rozwierne 1.129

X6 building width / szerokość budynku 1.103
X3 building form (shape) / bryła budynku 1.096
X13 type of aluminium–glass façade – mullion–

transom system / rodzaj fasady aluminiowo- 
-szklanej – słupowo-ryglowa

1.063

X21 type of ventilated façade cladding – HPL panel 
/ rodzaj okładziny elewacji wentylowanej – 
płyta HPL

1.060

X17 type of glazing – opaque glass /  
rodzaj zastosowanego szkła – nieprzezierne 1.052

X5 building length / długość budynku 1.049
X1 location / lokalizacja 1.046
X23 type of ventilated façade cladding – fibre-

cement panel / rodzaj okładziny elewacji 
wentylowanej – płyta włókno-cement

1.028

X28 type of window joinery – structurally bonded 
windows / rodzaj stolarki otworowej – okna 
klejone strukturalnie

1.019

X14 type of aluminium–glass façade – semi-structu-
ral system / rodzaj fasady aluminiowo-szklanej 
– półstrukturalna

1.017

X27 type of window joinery – tilt-and-turn windows 
(RU) / rodzaj stolarki otworowej – okna RU 1.006

X2 type of public utility building / rodzaj budynku 
użyteczności publicznej 1.002
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The conducted sensitivi-
ty analysis enabled the se-
lection of individual input 
variables, reducing the set 
from 24 to 16 of the most 
significant variables. After 
introducing the reduced set 
of 16 variables, the mod-
el’s training error decreased 
from 22.55% to 10.92%, 
which is comparable to the 
error obtained for the neu-
ral network model using all 
24 variables (10.91%). The 
first non-significant varia-
ble identified was X17 – type of glazing (opaque).
Additionally, a sensitivity simulation of the ANN model 

was performed with respect to changes in the input variable 
values. In the first step, the model’s response to modifica-
tions of the most significant variable – X8, the area of the 
analysed façade -was examined. In the second step, a sim-
ulation was conducted for the three most influential input 
variables: X8 – area of the analysed façade; X4 – building 
height; X11 – type of façade analysed (curved). The measur-
able parameters were increased and decreased by 10% rel-
ative to their baseline values, while all other variables were 
kept constant. For variable X11, depending on possible con-
figurations, the following coding was adopted: “occurs = 1” 
and “does not occur = 0”. For a randomly selected case, the 
predicted façade construction cost and the percentage devia-
tion from the baseline value were determined. Furthermore, 
basic descriptive statistics were calculated: the arithmetic 
mean (m), standard deviation (s), and coefficient of variation 
(V), which, as a relative measure of variability, enables com-
parison of results when the analysed quantities are of differ-
ent magnitudes. The results are presented in tables 3 and 4.
Based on the conducted simulation, it can be concluded 

that the model correctly reflects the response to changes 
in the input variable values. In the analysed combinations 
that included the curved façade variable X11, a higher per-
centage increase in costs 
was observed compared to 
the baseline values. This 
outcome is fully justified, 
as the construction of such 
façades requires the use of 
curved glass, the production 
of which generates higher fi-
nancial expenditures.
The coefficient of vari-

ation V, calculated for the 
modification of the key var-
iable, reached 8%, while for 
the simultaneous modifica-
tion of the three most signifi-
cant variables it amounted to 
12%.

22.55%

10.92% 10.91%10.00
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Fig. 2. Training Error Value of the ANN Model as a Function of 
the Number of Input Variables
Rys. 2. Wartość błędu uczenia modelu SSN w  zależności od liczby 
zmiennych wejściowych

ła selekcję poszczególnych 
zmiennych wejściowych, 
ograniczając zbiór 24 zmien-
nych do 16 najistotniejszych. 
Po wprowadzeniu 16  zmien-
nych błąd uczenia modelu 
zmalał z  22,55% do 10,92% 
i  jest porównywalny do błę-
du, jaki uzyskuje model sieci 
neuronowych w  przypadku 
wprowadzenia 24 zmiennych 
(10,91%). Pierwszą nieistotną 
zmienną modelu była zmien-
na X17 – rodzaj zastosowane-
go szkła (nieprzezierne).

Dodatkowo wykonano symulację wrażliwości modelu SSN 
w odniesieniu do zmiany wartości zmiennych wejściowych. 
W pierwszym kroku poddano analizie reakcję modelu na mo-
dyfikację najistotniejszej zmiennej – powierzchni analizowa-
nej elewacji X8, a w drugim kroku przeprowadzono symula-
cję zmiany modelu w odniesieniu do trzech najistotniejszych 
zmiennych wejściowych: X8 – powierzchnia analizowanej 
elewacji; X4 – wysokość budynku; X11 – rodzaj analizowanej 
elewacji – łukowa. Parametry mierzalne zostały zwiększone 
oraz zmniejszone o 10% względem wartości bazowej, przy 
jednoczesnym utrzymaniu pozostałych zmiennych na nie-
zmienionym poziomie. Z  kolei w  przypadku zmiennej X11 
– w zależności od możliwych kombinacji przyjęto: „wystąpi 
= 1”, „nie wystąpi = 0”. Dla losowo wybranego przypadku 
określono prognozowany koszt wykonania elewacji oraz 
procentową różnicę w odniesieniu do wartości wyjściowej. 
Obliczono również podstawowe statystyki opisowe: średnią 
arytmetyczną (m), odchylenie standardowe (s) oraz współ-
czynnik zmienności (V), który jako miara względna zmien-
ności, pozwala porównywać wyniki, gdy wielkości poddane 
analizie są różnego rzędu. Wyniki przedstawiono w tabelach 
3 oraz 4.
Na podstawie przeprowadzonej symulacji można stwierdzić, 

że model prawidłowo odwzorowuje reakcję na zmiany warto-
ści zmiennych wejściowych. W analizowanych kombinacjach, 

w  których uwzględniono 
elewację łukową X11, odno-
towano większy procentowy 
wzrost kosztów w  porówna-
niu z wartościami bazowymi. 
Jest to zjawisko całkowicie 
uzasadnione, gdyż realizacja 
tego typu elewacji wymaga 
zastosowania szkła giętego, 
którego produkcja generuje 
większe nakłady finansowe. 
Współczynnik zmienności 
V, obliczony przy zmianie 
kluczowej zmiennej, osią-
gnął 8%, z kolei w przypadku 
zmiany trzech najistotniej-
szych zmiennych – 12%.

Table 3. Variability of the output variable Y of the ANN model 
depending on the change in the most significant input variable X8
Tabela 3. Zmienność zmiennej wyjściowej Y modelu SSN w zależności 
od zmiany najistotniejszej zmiennej wejściowej X8

Variable 
X8 /  

Zmienna  
X8

Area of the 
analysed 

façade [m2] 
/Powierz- 

chnia  
analizowa-
nej elewacji  

[m2]

Façade cost 
according 

to the ANN 
model 

[mln PLN] 
/ Koszt 
elewacji  

wg modelu  
SSN  

[mln zł]

Cost 
change 
[%] / 

Zmiana  
kosztu 

[%]

m s V 
[%]

n/c / bz. 5103.25 5.698 0

5.70 0.47 8+10% 5613.58 6.175 8

–10% 4592.93 5.232 – 9
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Summary
The conducted research 

confirms that the use of an 
artificial neural network 
for forecasting curtain 
wall costs constitutes an 
effective and valuable tool 
supporting project budget 
planning. For the train-
ing set, the coefficient of 
determination R2 reached 
0.97387, and for the test 
set 0.947726, indicating 
that the ANN model ex-
plains the variability of 
the dependent variable 
Y (façade system costs) 
very well. Moreover, the 
MAPE value of 11.53% 
for the test set demon-
strates a  satisfactory lev-
el of predictive accuracy 
for cost estimation at the 
conceptual design stage. 
It should be noted that the 
ANN model may exhibit 
certain limitations, such 
as the risk of overfitting, 
non-uniform relationships 
between variables, lack 
of identifiable data struc-
tures, subjective variable 
assessment, or an insuffi-
cient number of observa-
tions in the dataset.
The sensitivity analy-

sis indicates that the key 
factor influencing curtain 
wall costs is their surface 
area (X8). The sensitivity 
level of the output varia-
ble reached 56.978, while 
the remaining variables 
exhibited significantly lower impact (below 2.571). The 
stepwise selection of input variables allowed for reducing 
the number of factors from 24 to 16 without a noticeable 
decline in model performance. The conducted simulation 
of the influence of the most significant input variables 
confirmed the model’s appropriate response to changes in 
input parameters.
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Podsumowanie
Przeprowadzone badania 

potwierdzają, że zastoso-
wanie sztucznej sieci neu-
ronowej do prognozowania 
kosztów ścian osłonowych 
stanowi skuteczne i warto-
ściowe narzędzie wspiera-
jące planowanie budżetu 
przedsięwzięcia. W  przy-
padku zbioru uczącego 
współczynnik determina-
cji R2 wyniósł 0,97387, 
a  w  przypadku zbioru 
testowego 0,947726, co 
wskazuje, że model SSN 
bardzo dobrze wyjaśnia 
zmienność zmiennej za-
leżnej Y (koszty systemów 
fasadowych). Ponadto 
błąd MAPE na poziomie 
11,53% dla zbioru testowe-
go świadczy o zadowalają-
cej jakości predykcji mo-
delu szacowania kosztów 
ścian osłonowych na etapie 
przygotowania koncepcji 
projektowej. Należy pod-
kreślić, że model sztucz-
nej sieci neuronowej może 
mieć pewne ograniczenia 
związane np.: z  ryzykiem 
nadmiernego dopasowania, 
brakiem jednorodnych za-
leżności pomiędzy zmien-
nymi, brakiem identyfiko-
walnych struktur danych, 
subiektywną oceną zmien-
nych, czy zbyt małą licz-
bą danych w  zbudowanej 
bazie.
Przeprowadzona analiza 

wrażliwości wskazuje, że 
kluczowym czynnikiem wpływającym na poziom kosztów 
ścian osłonowych jest ich powierzchnia X8. Stopień wraż-
liwości zmiennej wyjściowej kształtował się na poziomie 
56,978, podczas gdy pozostałe zmienne charakteryzują się 
istotnie mniejszą siłą oddziaływania (poniżej 2,571). Selekcja 
krokowa zmiennych wejściowych pozwoliła na ograniczenie 
liczby czynników z 24 do 16, bez wyraźnej utraty jakości mo-
delu. Przeprowadzona symulacja wpływu najistotniejszych 
zmiennych wejściowych potwierdziła poprawność reakcji 
modelu na zmianę parametrów wejściowych. �

Artykuł wpłynął do redakcji: 10.07.2025 r.
Otrzymano poprawiony po recenzjach: 19.08.2025 r.

Opublikowano: 23.12.2025 r.

Table 4. Variability of the output variable Y of the ANN model depend-
ing on the changes in input variables X8, X4, X11
Tabela 4. Zmienność zmiennej wyjściowej Y modelu SSN w zależności od 
zmiany zmiennych wejściowych X8, X4, X11

Combi-
nation / 
Kombi- 
nacja

X8 
[%]

X4 
[%] X11

Façade cost 
according to the ANN 

model [mln PLN] / 
Koszt elewacji wg 

modelu SSN [mln zł]

Change 
[%] / 

Zmiana 
[%]

1.1 bz bz 0 5.698 0

1.2 +10 bz 0 6.175 8

1.3 +10 +10 0 6.234 9

1.4 +10 +10 1 7.566 25

1.5 +10 bz 1 7.481 24

1.6 bz +10 0 5.749 1

1.7 bz +10 1 6.975 18

1.8 bz bz 1 6.881 17

1.9 –10 +10 0 5.282 –8

1.10 –10 +10 1 6.327 10

1.11 –10 –10 0 5.181 –10

1.12 –10 –10 1 6.125 7

1.13 –10 bz 0 5.232 –9

1.14 –10 bz 1 6.226 8

1.15 bz –10 0 5.648 –1

1.16 bz –10 1 6.786 16

1.17 +10 –10 0 6.119 7

1.18 +10 –10 1 7.394 23

Arithmetic mean /  
Średnia arytmetyczna m 6.282

Standard deviation /  
Odchylenie standardowe

s 0.760

Coefficient of variation / 
Współczynnik zmienności

V 12%
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